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ABSTRACT

The increased presence of digital multimedia in numerous applications, such as security, surveillance, the se-

mantic web, has rendered the automated characterization of video content necessary. The localization of different

activities/events in video content is of particular interest, however it is quite challenging to achieve in a principled

manner and with no prior knowledge or training. This work presents an original, principled solution to the problem

of detecting changes of activity in video, based on sequential change detection techniques. Initially, a binary mask

of the active pixels, the Activity Area, is extracted in a pre-processing step by estimating the kurtosis values of

inter-frame illumination variations. Sequential change detection is then applied to the illumination changes of the

active pixels over time, leading to the separation of the video sequence into segments corresponding to different

activities, which can be further processed for classification and recognition. Experiments with various indoors and

outdoors videos demonstrate the system’s good performance.

I. I NTRODUCTION

Automated systems for event detection in video are constantly being developed and refined, in an effort to increase

the usability of the video data. Event detection requires the initial segmentation of the video in sequences of frames

that contain one kind of event or activity. Currently most work on the temporal processing of video separates

sequences in shots, i.e. groups of frames filmed from the same camera or viewpoint. However, the resulting video

segments do not necessarily contain different types of activities, since no motion, and hence activity information,

is taken into account. Events and activities are often detected using Hidden Markov Models (HMMs) [1], but

these approaches require significant amounts of training, and their architecture needs to be selected empirically in

order to achieve accurate results. This fact, in combination with their high computational cost, renders them highly

specialized, limiting their flexibility for use in a wide range of applications.

Motion is a significant indicator of changes in events and actions in video, so this work proposes a novel,

motion-based non-parametric approach to the problem of activity detection. The times and locations of changes in

activity are detected via statistical processing of the data. An important advantage of the methods used is that they

are not tailored to specific data sets, nor do they depend on training a particular model, so the proposed system
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can be applied to a wide range of videos. Additionally, the processing can take place in real time, apart from a

pre-processing step that can be implemented a priori.

II. M OTION ANALYSIS: ACTIVITY AREA

The first step of the proposed system, which can take place offline, processes the entire video sequence at once,

in order to extract a binary mask of the active pixels, called the Activity Area. An underlying assumption is that the

camera and background are static, or that possible camera motion can be compensated for. It should be noted that

the derivation of the Activity Area is robust to small background motions, as also shown in the experimental results.

At each framek, the inter-frame illumination variations at pixelr̄ can be induced by displacementuk(r̄) in active

pixels, or only measurement noisezk(r̄) in static ones. This can be expressed as the following two hypotheses:

H0 : v0
k(r̄) = zk(r̄)

H1 : v1
k(r̄) = uk(r̄) + zk(r̄), (1)

wherevi
k(r̄), i = 0, 1 represents the measured illumination variations at framek, pixel r̄. HypothesisH0 corresponds

to the case where only noise is present, represented byzk(r̄), and H1 corresponds to the case where there is

actual displacement, given byuk(r̄). The illumination variations between successive frames can be estimated from

simple inter-frame differences or from optical flow estimates, for videos with noisier data. The distribution of

the measurement noisezk(r̄) is not known, but can be approximated by a Gaussian probability density function

(pdf), as is often the case in the literature [2]. This approximation can be further supported by the fact that the

measurement noise originates from a large number of sources and is additive, so it can be approximated by a

Gaussian pdf based on the Central Limit Theorem [3]. Then, active and static pixels can be separated by finding

those whose illumination variations do not follow a Gaussian distribution. A classic measure of Gaussianity is the

kurtosiskurt(y) = E[y4]−3(E[y2])2, as the kurtosis of Gaussian data is equal to zero [4]. The kurtosis is actually

sensitive to outliers, so it can detect whichvi
k(r̄) originate from pixel activity, even when the measurement noise

is not strictly Gaussian. In practice, the illumination variations of each frame pixel over time are extracted, and

their kurtosis is estimated. Its absolute value is then compared with a threshold that is equal to10% of the mean

absolute kurtosis value. This threshold is found to provide a robust separation of the high and low kurtosis values,

and consequently the active and static pixels. Extensive experiments show that for a wide range of both indoors

and outdoors videos, the kurtosis indeed leads to accurate Activity Areas at a low computational cost.

III. SEQUENTIAL CHANGE DETECTION

The Activity Area is extracted offline, as its estimation requires use of the entire video sequence. Once it is

available, the video can be processed in real-time to find changes in the activity in it. The time instants where

activities change are extracted by sequential change detection techniques [5]. The input is, as before, a sequence of

the illumination variations from framek0 to k, i.e. vk0,k = [v̄k0 , v̄k0+1, ..., v̄k], which follow a distributionf0 before

a change occurs, andf1 after the change, at an unknown framekch. Here,v̄ki contains the illumination variations of
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all pixels in the activity area at frameki, so an activity area consisting ofNa pixels has̄vki = [vki(1), ..., vki(Na)].

All active pixels from each frame are examined simultaneously to ensure that there will be enough data samples

for the sequential change detection to provide reliable results. At framek, vk0,k is input into the log-likelihood

ratio to detect a change:

Tk = LLRTk(f1||f0) = ln
f1(vk0,k)
f0(vk0,k)

= ln
k∏

ki=k0

f1(v̄ki)
f0(v̄ki)

=
k∑

ki=k0

ln
f1(v̄ki)
f0(v̄ki)

, (2)

where it has been assumed that the data samplesv̄ki are independent identically distributed (i.i.d.) under each

hypothesis, sofH(vk0,k) =
∏k

ki=k0
fH(v̄ki), H = 0, 1. The valuesvki(1), ..., vki(Na) are also assumed to be

i.i.d., sofH(v̄ki) =
∏Na

n=1 fH(vki(n)). The log-likelihood ratio is then equal to:

Tk = LLRTk(f1||f0) =
k∑

ki=k0

Na∑
n=1

ln
f1(vki(n)
f0(vki(n))

, (3)

The test statistic is expressed with the following iterative form [6], known as the CUSUM (Cumulative Sum) test:

Tk = max

(
0, Tk−1 + ln

f1(v̄k)
f0(v̄k)

)
, (4)

and a change is detected at a framekch when the test statistic becomes higher than a pre-defined threshold.

Unlike the threshold for sequential probability likelihood ratio testing [7], [8], the threshold for the CUSUM testing

procedure cannot be determined in a closed form manner. It has been proven in [9] that the optimal threshold for

the CUSUM test, for a pre-defined false alarmγ, is the threshold that leads to an average number of changes under

H0 equal toγ. In the general case examined here, the optimal threshold is estimated empirically from the data

being analyzed [10]. After extensive experimentation, it is found that, for videos like the ones examined here, the

optimal threshold is equal toηopt = µT + ·σT , whereµT andσT are the mean and standard deviation of the test

statisticTk until framek.

A. Data Modeling

The CUSUM test of Eq. (4) requires knowledge about the family of distributions before and after the moment

of change in order to be implemented, although the time of change is unknown. The illumination variations of

active pixels over time contain outliers introduced by their change in motion, as these pixels are usually not active

in all frames. Data which contains outliers follows more heavy-tailed distributions than the Gaussian, such as the

Laplacian or generalized Gaussian [11]. In this work we focus on the Laplacian, whose parameters can be estimated

at a lower computational cost than the generalized Gaussian. The Laplacian distribution is given by:

f(x) =
1
2b

exp
(
−|x− µ|

b

)
, (5)

whereµ is the data mean andb = σ/
√

2 is its scale, for varianceσ2. The exponent of this distribution contains

an absolute difference instead of the difference squared, so its tails decay more slowly than those of the Gaussian,

indicating that the data contains more outliers than Gaussian data. The test statistic of Eq. (3) is written as:

Tk =
k∑

ki=k0

Na∑
n=1

ln
[
b0

b1
exp

(
−|vki(n)− µ1|

b1
+
|vki(n)− µ0|

b0

)]
= NNa ln

b0

b1
+

k∑

ki=k0

Na∑
n=1

(
−|vki(n)− µ1|

b1
+
|vki(n)− µ0|

b0

)

(6)
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The data used in the experiments, namely the illumination variations, are modeled with the Gaussian and Laplacian

distributions in order to determine which one is more appropriate. The Root Mean Square error (RMS) between the

actual empirical data distribution and the corresponding Gaussian and Laplacian model is estimated for all videos.

For reasons of space, only its mean is presented, which is found to be0.0915 for the Gaussian and0.0270 for the

Laplacian model, justifying the choice of the latter as a better fit for our data. In practice, the time of change is

not known, so the data to be used for the estimation of the model parameters needs to be selected carefully. In the

experiments, the firstw0 = 10 frames are considered as “baseline data”, which is used to derive the parameters of

f0. At each framek, the data in that frame and the previousw1 = 10 frames is used to approximatef1. This entails

the necessary assumptions that no changes occur in the first10− 20 frames that contain the baseline data and the

data used for the first approximations off1. These windows are found to give good change detection results for a

wide range of videos, both indoors and outdoors, from different domains.

IV. EXPERIMENTS

The proposed approach is applied to a wide range of videos, both indoors and outdoors, from different domains,

in order to determine its performance in practice. The videos can be found on http://mklab.iti.gr/content/videos.

A. Basketball hoop

Initially a video of a kid throwing a ball through a basketball hoop is examined (Fig. 1(a), (b)). The corresponding

activity area, shown in Fig. 1(c), shows the pixels where the kid moves and the trajectory of the ball. The application

of the CUSUM algorithm leads to the detection of changes at frames20, 35. Indeed, at frame20 the kid starts to

throw the ball, which moves up until frame35, after which it falls through the hoop.

(a) (b) (c)

Fig. 1. Basketball hoop. (a) Frame 20. (b) Frame 35. (c) Activity Area.
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B. Kids flying planes

In this experiment, a video of two kids flying planes is examined (Fig. 2(a), (b)). The corresponding activity area,

shown in Fig. 2(c), shows the pixels where the kids moved and the plane trajectories. Although the background

illumination in the trees area is not entirely constant, the activity area is extracted with good accuracy because of the

sensitivity of the kurtosis to outliers, which correspond to the actual childrens’ motions and not small background

motions and illumination variations. The application of the CUSUM algorithm leads to the detection of changes at

frames25, 60. Indeed, at frame25 the kids start to move their hands to throw the planes, and the airplanes’ motion

does change at frame60 when they crash into each other and fall, verifying the results of the CUSUM method.

(a) (b) (c)

Fig. 2. Kids flying planes (a) Frame 15. (b) Frame 60. (c) Activity Area.

C. Fight, run away

An indoors surveillance video is examined, where two people walk towards each other, start fighting, and then run

away from each other (Fig. 3(a), (b)). The resulting activity area contains two disjoint regions, one corresponding

to the people walking and fighting, and on corresponding to minor activity near the receptionist’s desk (Fig. 3(c)).

The small activity area contains too few pixels to reliably detect changes, so only the data in the large activity area

is processed. Changes are detected at frames45, 57, 90, 117, 141, 172, 225. The change in frame45 is an error, as

the people approach each other during frames1 − 57. At frame 57 one person opens his arms, at frame90 they

meet and start to fight, so those are true change points. During the fight they move towards the right at frame117

and then to the left at frame141. At frame 172 they stop fighting and run away from each other, disappearing

from the scene at frame225. Thus, the change detection results agree with the ground truth for this more complex

activity. The two false alarms can be eliminated by estimating the mean displacement in the subsequences before

and after those instants: if it is the same, those change points are removed.

V. CONCLUSIONS

A novel method for the analysis of video based on statistical sequential techniques is presented. Binary masks

indicating the regions of activity in a video are extracted from the higher order statistics of the illumination variations,

March 31, 2009 DRAFT



6

(a) (b) (c)

Fig. 3. Fight, run away. (a) Frame 100. (b) Frame 160. (c) Activity Area.

so that only the active pixels inside these masks are processed in the sequel. Changes in the activity taking place are

detected via the application of sequential change detection techniques, namely the CUSUM algorithm. The proposed

system does not require training or model selection in order to be implemented, therefore it can be applied to a

variety of video data. Experiments with various both indoors and outdoors videos verify that the method gives good

results. Future work involves the extension of the proposed approaches for the removal of false alarms in various

contexts.
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