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B. Evaluation setting the harmonic mean of Coverage and Overfléwo (v1, v2, €),
Assessingan evaluation method, such as the one proposé&d

here, is by no means a straightforward process. In the relevant _ 2 _

literature there are neither detailed qualitative explanations nor O Torl + vl

experimental results that would provide supporting evidence
P o R ar [foall([[onll + lleall = e)(Ileall = )

for the superiority of one or the other measure [5]. We have
chosen to address this problem by following an evaluation (o[ + 2for[[[va]] = e([los][ + [[22]]))
setting that involves both qualitative and experimental condhere ||v1|| and ||vs|| is the duration, counted in shots, of
parison. The former is performed by identifying a numbehe scene to the left and to the right of the scene boundary,
of qualitative properties that a good measure is intuitivehespectively. Based on the above equatidfo(vo,v1,e€)
expected to satisfy and checking whether they are exhibited ¢iyes the harmonic mean if the scene boundary is detected
the proposed method (and the other methods in the literaturg),the end of shotS; + e instead. Since this formula is
while the latter revolves around examining the processing timet symmetric,F-o generates different scores for equivalent
that is required for tuning the parameters of a scene segmenors, e.g. for the case of || = 30, ||v2]| = 70 ande = 3,
tation system when one of the aforementioned measuresris; (vy,vq,€) = 0.7323 and Foo (va, v1, €) = 0.4388.
used for guiding the parameter selection process. A user studBymmetry in scene boundary misidentification errors is also
involving 6 non-expert users was also conducted. not satisfied by measurBpr. When a scene boundary that

In order to compare the three measures, we implemenigdsts at the end of shd, is erroneously detected at the end
four different scene segmentation techniques, and used thefishot S; — ¢, the harmonic mean of Precision and Recall,
on three datasets. The scene segmentation techniques inclEdg, is:
the original STG technique [23], an STG variation that em-

- . . . Q(Ul,UQ,e)

ploys high-level audio event descriptors instead of low-level Fpg(vi,vs,€) =
visual descriptors, as described in [11], and two multi-modal Qv1, v, €) + (o] + [Jvaf| - 1)
scene segmentation techniques [25], [26]. The video datas@tsere Q(vy, ve,e) = ||v1]|? + |[ve||? + €2 — (2e + 1)||v1]| —
are a documentary, a movie and a news one. The first is magdg|| + e. In the above equatiofpp(vs,v1,€) gives the
of 15 documentaries (513 minutes in total) from the collectionarmonic mean if the scene boundary is detected at the end of
of the Netherlands Institute for Sound & Vision, also useshotS; + e. Equation (6) is not symmetric, because quantity
as part of the TRECVID dataset in 2009. The second one(s is not symmetric. Consequently, thE-r measure also
made of six movies (643 minutes in total). Finally, the newgenerates different distance scores for equivalent errors.
dataset consists df hour-long news videos. These datasets On the other hand, DED by definition does not discriminate
include 3459, 6665 and 1763 automatically detected shdigtween these types of errors and produces in both cases a
and 525, 357 and 57 manually identified ground truth scene@nilarity value proportional to the error magnitude:
respectively. It should be noted that in the news and movie
datasets the ground truth scenes usually include many more e
shots than in the documentary one. DED(v1,v3,€) = DED(v3,v1,€) = ()

All experiments reported in the sequel were carried out on a

PC with an Intel Core 2 Quad Q9300 CPU and 4GB of RAM. In order toquantify the expected asymmetry, for all videos
belonging to the 3 datasets that we use in this work, pairs

) o ] ] of synthetic segmentations were constructed by introducing

C. Analysis of qualitative properties of evaluation measure§ymmetric misplacements of each ground truth scene bound-

In this subsection the comparison of DEBgo and Fpr  ary. Specifically, starting from the ground truth segmentation
according to certain qualitative properties is conducted. dhd considering one scene boundary at a time, this boundary
should be noted that since DED is a dissimilarity measun@as misplaced by and —e shots, respectively, wherewas
while Feo and Fpr are similarity measures, — DED is selected randomly from the integer values that are smaller
employed instead in the comparisons. than the minimum distance of that particular scene boundary

1) Symmetry in scene boundary misidentification errorsfrom its two adjacent scene boundaries (so that the introduced
An example of a misidentification error is demonstrated in Figaisplacement would not lead to a violation of the scene
2. The scene boundary which exists at the end of $hois convexity restriction). A single value af was of course used
misplaced by shots, being detected either at the end of shfir each pair of scene boundary misplacements, to ensure their
S1 — e or at the end of sha$; + e. It is reasonable to expectsymmetry. ThenDED, Fpr and Foo values were estimated
that a good evaluation measure does not discriminate betwéalways in the rangé to 100%) by comparing each synthetic
these two cases, i.e. that it generates identical results witheagmentation with the ground truth one, and subsequently the
taking into account whether the estimated scene boundaryli& D, Fpr and Foo differences were calculated for each
found before or after the actual one. As a matter of fact, thepair of synthetic segmentations that present symmetric errors.
is no rationale that could support any differentiation of the twbhe mean and standard deviation of these differences, post-
cases. processed so as to simulate the case whéfe of the true

It can be proven that if a scene boundary that exists at theene boundaries of each video are misplaced in this way, are
end of shotS is erroneously detected at the end of shipt-e, reported separately for each video dataset in Table I.

®)

(6)

)
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Dataset DED Diff. Fpr Diff. Foo DIff. | : : | |
(n+t0) (n+£0) (n£0) : : >
Documentary 0£0 0.83%+ 1.62% | 6.81%+ 7.92% S, Si+e S)e S,  Ss Shot Index
Movie 0+0 0.61%+ 1.17% | 5.17%+ 5.4%
News 0+0 0.34%+ 0.47% | 2.78%+ 2.21%
TABLE | Ground Truth
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR | |
SEGMENTATION PAIRS THAT PRESENT SYMMETRIC SCENE BOUNDARY 0 >
MISIDENTIFICATION ERRORS 100 250 Shot Index
Method 1 DED =0.9167
: Fpg =0.8298
: : i Feo =0.7333 | -
: : - 125 250 300 Shot Index
Si-e S Si+e S,  Shot Index Method2 ~ DED =0.9167
Fpg =0.8906 :
Fo =0.8575 | R
Ground Truth 100 225 300 Shot Index
30 100 ShoIIndex Fig. 3. Anexample of a misidentification error evaluation witxo, Fpr
Method 1 . DED =0.97 and DED. Vertical bars denote scene boundaries; the dotted vertical bars
etho H Fpg =0.949 represent erroneously detected ones. QuantRigsSs and S3 denote the
: Feo =0.7323 > shot indices of the last shot of the first, second and third scene, respectively.
27 100 Shot Index Method 1 misplaced the beginning of the second scene2byshots, while
DED =0.97 method2 misplaced the same scene’s end23yshots. The two methods are
Method 2 H Fpr =0.9468 evaluated differently byf'co and Fpg.
: F o =0.4388 -
33 100 Shot Index

3) Satisfaction of metric propertytn section IlI-A it was

Fig. 2. Anexample of a misidentification error evaluation witf:o, Fpr ~ proven that the DED measure is a metric. On the contrary,
and DED. Vertical bars denote scene boundaries; the dotted vertical bgfs i ; i it ;
represent erroneously detected ones. Quantiiesnd S2 denote the shot FOO _IS not a metric, S.Ince It Is not symmetric. For example’
indices of the last shot of the first and second scene, respectively. While bt wdeo stream ConSIS'FS d_ﬂO Sh(_)ts and one scene and the
scene segmentation methotlsand 2 misidentify the scene boundary I ~experimental segmentation identifies two equally-long scenes,
shots, only DED generates symmetric resuits. then Fo = 0.667. In the opposite case, i.e. when a video

stream includes two scenes &f shots each and a scene seg-

- mentation techni retrievi nly on n =0.
2) Symmetry of errors located at the beginning and the eryg tation technique retrieves only one scene, thiep = 0

: A : , Il
of a scene:This property is similar to the one discussed above. generally
A scene segmentation technique should not be evaluated 7 7 8
differently if it “crops” the beginning or the end of a specific co(V1,V2) # Foo(Ve, V1) (®)
scene. An example of this is shown in Fig. 3. where V; and 1, are two segmentations of the same video

In order to quantify the expected asymmetry magnitudgream.
between errors tak_ing place at the beginning and the enq °Dn the other hand, measuié-5 satisfies the symmetry
a scene, an experimental strategy analogous to the previgiisyerty. This is proven by considering the definition of Recall
subsection was followed, where symmetric errors were siminq precision as the ratio of the intersection of the sets of
larly introduced to each pair of adjacent scene boundaries. Td}%und truth and experimental shot pairs belonging to the same

mean and standard deviation of the resulting D, Fpr and  gcene over the ground truthi; and the experimental séfs,
Feo differences, as in the previous experiment, are report%pectively:

separately for each video dataset in Table II.

Dataset || DED Diff. Fpg DIff. Foo DI, _ |Ven Vgl ~ |Ven Vgl
wto) | (uto) (% 0) RVe, Vo) = =g PVe Vel = == )
Documentary|| 0 £ 0 7.17% L 8.39% | 18.8% =L 14.36%
Movie 0+0 9~2°A;i 12-87;% 18-970%1 16-330% Fpr is definedas the harmonic mean of Recalk and
News 0Lo0 2.94% L 3.59% | 9.92%L 11.25% PrecisionP:
TABLE II
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR
SEGMENTATION PAIRS THAT PRESENT SYMMETRIC ERRORS AT THE 2 2|V N Vg
BEGINNING AND AT THE END OF A SCENE FPR(VGaVE) = (10)

L4+ L [VeUVel+|Ven Vgl

Fpr(Ve, Vg) estimateghe similarity of the two segmenta-

As demonstrated by the results of Table Il and also thgyns. The corresponding distandr(Vi, Vi) is given by
example of Fig. 3, only DED satisfies this property. Employinghe following equation:

Feo or Fpg leads to different (non-symmetric) performance
estimates, induced by the different lengths of the adjacent
scenes.

|VE UVG| — ‘VE ﬁVGl

Dpp=1—Fpp =
PR PRT W UVe| + Ve N Vg

11)
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It is straightforvardly understood thatDpr(Vs, VE) = computational complexity is expected not to be significantly
Dpr(VEe, V) and as a result the measure exhibits the syrhigher thanO(N). But, it should be mentioned that the worse
metry property. However, the distanél i does not generally case complexity is higher than the one related‘tg,, since
satisfy the triangular inequality. For example, let us suppos#iee job assignment complexity is cubic.
that a video stream consists of four shots, and three differentAn experimental evaluation of the computational complexity

segmentation$;, V5, and V3 have been defined for it: of DED, Fpr and Fop was carried out on the datasets
of section IV-B, and the results (expressed as the ratio of
Vi ={1,2}, {3}, {4} Fpgr or Fcpo computation time over DEDs computation time)
Vo = {1,2},{3,4} are given in Tables Ill, IV and V. These tables demonstrate
the higher efficiency of the DED measure. The observed
Vs ={1},{2},{3,4} differences between the three datasets are explained by the

In the above equations, the brackets denote scene boufﬁ&-t that in the news and the movie datasets, the video streams
aries. For segmentatiori§ and Vs, the intersection of shot comprise more shots, but are decomposed into fewer and

pairs that belong to the same scene is void. Consequenfijf9er ground truth scenes. Consequently, fhg; computa-
Dpr(Vi,V3) = 1. On the other hantVi NVs| = [VanVa| = 1 tional cost, which is fully determined by the number of shots,
while |V; UVa| = |VoUVs| = 2. As a resultDpg(Vi, Vo) = increases, while the computational cost associated with the

Dpr(Va,Vs) = 1/3 and Dpp(Vi,Va) + Dpr(Va,Vs) < browsing of the co-occurrence matrix remains unaffected.
D{:R(Vl, V3). So, the implicit solution spaces employed when e 23] 1] 5] 28]

using Fpg, as well asFo, are hon-metric spaces. Frp [DED || 1.1959 | 1.1229 | 1.2156 | 1.0506
Foo [DED || 9.6109 | 9.1970 | 6.9088 | 7.577

D. Further experimental comparison of performance mea- TABLE Il
sures COMPUTATIONAL COST OF Fpr AND Foo OVERDED IN THE

DOCUMENTARY DATASET.

1) Computational complexitylt can be deduced from the
Fpgr definition that the performance evaluation of a video
segmentation involvingV shots requires)(NN?) operations.
Note that these operations can be no more complex than Method [23] (11] [25] [26]
a summation and a logical AND. On the other hand, in ?gg;ggg jblsg’g gég?g g:ggi‘; §j§§§§
order to compute eithef-o or DED, the construction of
the co-o.ccurrence.matrix is required. This matrix is buiIt. py COMPUTATIONAL COST OFFPT:%E If\?/co OVER DED IN THE MOVIE
sequentially browsing all shots of the video and thus requiring DATASET.
O(N) operations. The co-occurrence matrix has a size of
|Ac| x |Ag|, where|A¢g| and|Ag| is the number of scenes
in the ground truth and the experimental segmentation, re-
spectively. After its estimationf-o computation involves all Method (23] (11] (25] [26]
co-occurrence matrix elements, bpt only Iinear_combin_ations ?? ’; ; BEB g:g;ié 2%232 %%05871 g:gg;;
of them. So, the overall computational complexity Ifo is

TABLE V
O(N) +O(‘AG| ’ ‘AED . . COMPUTATIONAL COST OF Fpr AND Foo OVER DED IN THE NEWS
Finally, DED also employs the co-occurrence matrix, which DATASET.

is decomposed into sub-videos using splitting boundaries.

Consequently, the overall complexity is ©(N) + O(DED)

where O(DED) is the complexity related to the total sub- The efficiency of DED is to a great extent due to the
video DED estimation. The theoretical determination of thidecomposition of the video to sub-videos (according to the
computational complexity is not a trivial task, since it dependsethod of section IlI-C). This can be demonstrated if DED’s
on the number of splitting boundaries, as well as the numb@mputation time is contrasted with the computation time of a
of ground truth and experimentally estimated scenes. Mdp&ED variant that does not decompose the video to sub-videos.
specifically, if the|Ag| ground truth boundaries are experi-The corresponding results are shown in Table VI. As will be
mentally estimated with a Recall rafé and a Precision rate discussed in the next subsection, the computational complexity
P, then the video will be divided inta? - |Ag| + 1 sub- that is associated with the evaluation of the measure plays a
videos. These sub-videos will include, in total,— R) - |Ag| critical role in the overall computation time that the parameter
ground truth scene boundaries afid- P)-|Ag| experimental tuning of a scene segmentation technique would require.
scene boundaries that are not sub-video boundaries as welR) Parameter sampling densityfthe parameters of a scene
Typical values of Recall and Precision, as those given in [24egmentation system, when no specific guidelines are avail-
are significantly over50%. If this baseline performance isable, are typically determined by search in the parameter
assumed andlAg| and |A¢| are assumed both equal 40, space; this involves a uniform sampling of the parameter
then each sub-video would contain on average less tharspace [11]. This parameter tuning is conducted by varying
ground truth and less thah experimentally estimated scenea parameter value that generates an error signal, where the
boundaries. So, in practical situations the DED algorithwiomain of the error signal is the parameter value space and

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460
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_Dataset || Documentary| Movie | News Algorithm 2 Sampling RateEstimationSummary
Non-optimized computatior] - - -
time / Optimized 2.4964 11.9849 | 34.439 1: The EITOI’. signalspg, eco, epgp are estimated for tha
computation time different distance measures and for parameter values@rom
TABLE VI to a maximum valud'. The sampling rate is fixed t6/Rj.

COMPUTATION TIME WITHOUT DECOMPOSING THE VIDEO TO SUBVIDEOS QuantityRO’ Wthh determines the |n|t|a| Samp“ng rate, is

DIVIDED BY COMPUTATION TIME WHEN DECOMPOSING THE VIDEO TO a constant.

SUB-VIDEOS ACCORDING TO SECTIONII-C. T .
2: Initialization: S = 1, fpr = FFT(epr), fco =
FFT((:’(jo), fDEL) = FFT(GL)ED).
3 A=T/(25 Ry)

the values of the error signal are the distances of the resultifig The error signals are recomputed by estimating their values
segmentations from the ground truth one. The latter distancéor the additional parameter valué® -i)/(251 - Ro) + A,
is calculated using a segmentation evaluation measure. Thé =0,1,2,...,2571 - Ry — 1.
computation time required for this process is affected not orfly S = S + 1.
by the computational complexity of the evaluation measurés The FFTs of the error signals are re-estimated and com-
but also by the required parameter sampling density. pared to the correspondinf) variables. If all of them are

The minimum sampling density is determined by the similar to the correspondings, the algorithm terminates
Nyquist-Shannon sampling theorem as being proportional toand the sampling is performed with reife/(2° - R). Else,
the spectrum bandwidth of the error signal (i.e., assuming thathe estimated FFTs become the n¢w& and the algorithm
it is a bandlimited signal, to its highest frequency). It should continues from Step 3.
be noted that when a signal is multi-dimensional, i.e. more
than one parameters are tuned at the same time, then the
Nyquist-Shannon sampling theorem is applied separately BED outperformsFp  for all examined methods and datasets.
each different dimension. In order to determine the highesbnsequently, it can be concluded that by employing DED, the
frequency, a thresholding is required, since in theory thempling required to tune the system parameters is more sparse
spectrum of any signal limited in time is not limited inthan if Fpr or Fop were employed. The total computational
frequency. Instead of employing a strict, arbitrarily chosegain is estimated by multiplying the corresponding gain values
threshold, we selectef) different thresholds, varying from from Tables Il to IX. It can be seen that through the use of
0.1% of the total spectrum power t2%, and averaged the DED the scene segmentation tuning becomes much faster, with

results. a speed up factor that reaches upl€- 15 times.
Furthermore, when conducting the experimental analysis, it

is not the analog error signal that is taken into account but Method [23] [11] [25] [26]

v . ot ; PR Fpgr [ DED || 1.3511 | 1.1244 | 1.3173 | 1.5475

inevitably a digital approximation of it, which is generated FoaTDED 1023 | L6635 L7217 20594

using a manually chosen sampling rate. In order to prevent

error signal aliasing, the sampling rate used to generate it . . . }WTC{*:%%;{”DEDlNTHE D OCUMERTARY
should exceed the Nyquist-Shannon rate. This can not be DATASET.

theoretically guaranteed, since it would require a priori knowl-

edge of the signal spectrum under examination. However, this

problem may be circumvented by relying on the fact that

when sampling exceeds the Nyquist-Shannon rate then the Method (23] [11] [25] [26]
bandlimited spectrum is identical and independent from the gggﬁggg 10'362%5 ;gggé 11_;);35 11_;1:314
sampling frequency. So, the adopted strategy was to double

the sampling points until the spectra of all three approximateg, \5wioh of 755, AnD FTCA(?E\E,E\QIEED IN THE MOVIE DATASET.
error signalsepr, eco, epgp Stabilized. This strategy is

summarized in Algorithm 2. It should be noted that the number

of samples doubles (Step 5) before the termination control

(Step 6) in order to provide extra accuracy to the spectra Method [23] [11] [25] [26]
. . . Foo/DED || 0.8438 | 1.1794 | 1.2316| 1.3993
The experimental setup was identical to the one employed o

for computational complexity, i.e. it included the four scene _ FTAB'(;\%E'SDEDIN T NEWS DATASET
segmentation techniques and the three different datasets. The PR co '

results (comparing the highest frequency of the error signal

spectrum when using DEDFpr and Fp) are shown in Ta-

bles VII, VIII and I1X. These tables show that ti&>r/DED

or Foo/DED bandwidth ratio is not so much dependent ofs- User Study

the dataset, but rather on the employed scene segmentatioim addition to the above experiments, we conducted a user
technique. However, it can be seen that in all experimenstudy involving 6 non-expert users in order to further assess
only on two occasions the sampling rate of the DED errdrow well the results of the proposed DED measure match the

signal was required to be greater than that/fo, while expectations of human evaluators. For the needs of this study

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460
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we randomly producedriplets of synthetic segmentations for Ground Truth Segmentation

a subset of the videos of our datasets, and then selected E-‘ m B P,
of those triplets for which the three considered evaluatio -

measures disagree in the ranking of each triplet's segmen-

tations (e.g. segmentation triplets for whiéghE'D suggests @

that the first segmentation is the most similar to the manuall

created ground-truth one, whilEpr and Foo suggest that

the second and the third one are most similar to the groung, Feo =049, Fpg =078, DED =09
truth, respectively). The 20 triples were shown one by on

to a set of 6 non-expert users, who independently viewed t?.‘wm

(segmented) videos and ranked each of them, without havi
FCO :0.55, FPR :0.71, DED :07

FCO :0.()7, FPR :0.44, DED :05

et

any knowledge of the correspondifgE D, Fpr and Foo

values. The agreement of the user rankings with the rankin {

generated by each measure was evaluated using normal;ﬁ-‘m
inversion count [27] and the results are shown in Table X

It can be seen that DED has significantly better (i.e., lower)) Feo =0.63, Fpg =067, DED =0.38

seores farton and e *iﬂﬁm

Sgmentation EvaluatioMeasure || DED | Fpr | Fco
NormalizedInversionCount 0.16 | 0.37 0.53

TABLE X Fig. 4. An example of scene segmentation evaluation usifigr, Fco

and DED. In each of the five rows 10 key-frames, belongindGadjacent

video shots, are presented. The vertical lines represent the scene boundaries
(either ground truth boundaries or automatically detected ones). In the first row
the ground-truth segmentation of the video is shown. The video includes two
scenes, comprising and4 shots, respectively. In example result (a) the correct
scene boundary and 3 additional false scene boundaries have been detected.
Example result (b) only misplaces the scene boundary by 1 shot. Example

Finally, a few qualitative examples of scene segmentati('ﬁiu't (c) misplaces the correct scene boundary by 1 shot and furthermore

. . . . . . reports two false boundaries at the end of the video. Example result (d) also
evaluation are given in Fig. 4, illustrating the values of thﬁ'\isplaces the correct scene boundary by 1 shot, and reports only one false

Fpg, Fco and DED measures in realistic scene segmentatipundary at the beginning of the video. It is expected that all evaluation

cases. These examp]es further emphasize the Superiority’ﬂQ@SUFES would consider example result (b) as being better than (a), and (d)

. . . . -being better than (c). However, thi&-o of (a) is higher than that of (b) and
the DED metric in producing evaluation results which are 'Fﬂe Fppr of (c) is higher than that of (d). On the other hand, DED manages

better agreement with the human perception of segmentatiorvaluate these results according to what is intuitively expected.
goodness, compared 8-z and Foo.

RESULTS OF THE CONDUCTED USER STUDYNORMALIZED INVERSION
COUNT EXPRESSES HOW WELL THE OUTPUT OF EACH EVALUATION
MEASURE AGREES WITH THE RESULTS OF HUMAN EVALUATORSLOWER
SCORES INDICATE BETTER AGREEMENY.

V. CONCLUSION [2] A. Hanjalic, R. L. Lagendijk, and J. Biemond, “Automated high-level

In this work a novel scene segmentation evaluation measure movie segmentation for advanced video-retrieval systelB&E Trans.
. . On Circuits and Systems for Video Technologyl. 9, no. 4, pp. 580-
was presented. Furthermore, an implementation that computes 5gg jine 1999,

this measure with less than cubic complexity was introduceds] A. F. Smeaton, P. Over, and A. R. Doherty, “Video shot boundary
For testing the metric’s ability to model efficiently the human  detection: Seven years of trecvid activitgomputer Vision and Image

f ti b f ired ti Understandingvol. 114, no. 4, pp. 411-418, April 2010.
periormance rating, a number of required measure propert C. J. van Rijsbergerinformation Retrieval Butterworth-Heinemann,

were introduced. The proposed measure and two baseline per- London, 2nd edition, 1979.
formance measures were comparatively evaluated with respéelt J. Vendrig and M. Worring, “Systematic evaluation of logical story unit

; ; : : segmentation,IEEE Trans. on Multimediavol. 4, no. 4, pp. 492-499,
to their compliance with these properties. Furthermore, an 3 .. ver 2002

experimental setup was used to examine the computationg] w. Tavanapong and J. Zhou, “Shot clustering techniques for story
cost that is associated with the parameter tuning of a scene browsing,"IEEE Trans. on Multimediavol. 6, no. 4, p. 517527, August

: : : : 2004.
segmentation system, when this process is guided by o S. Benini, L.-Q. Xu, and R. Leonardi, “Identifying video content con-

of these evaluation measures. These results, together with sistency by vector quantization,” iroc. Workshop on Image Analysis
the results of a small user study that was also conducted, for Multimedia Interactive Services (WIAMISYlontreux, Switzerland,

demonstrate that the presented measure outperforms th? eéngs(?O?'Wang P.Wang, W. Hu, Y. Du, Y. Zhang, and G. Xu, “Scene

currently employed in the literature and provides an effi- * segmentation and categorization using ncuts,Pioc. IEEE Conf. on
cient approach to comparing automatic scene segmentation Computer Vision and Pattern Recognition (CVPR)nneapolis, USA,
techniques and to guiding the optimization of their param-_ June 2007, p. 17.

. . . . &9] V. Parshin, A. Paradzinets, and L. Chen, “Multimodal data fusion for
eters. The software implementation of DED is available at” yigeo scene segmentation,” Proc. Int. Conf. on Visual Information

http://mklab.iti.gr/project/ded. and Information System#msterdam, The Netherlands, July 2005, p.
279289.
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