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B. Evaluation setting

Assessingan evaluation method, such as the one proposed
here, is by no means a straightforward process. In the relevant
literature there are neither detailed qualitative explanations nor
experimental results that would provide supporting evidence
for the superiority of one or the other measure [5]. We have
chosen to address this problem by following an evaluation
setting that involves both qualitative and experimental com-
parison. The former is performed by identifying a number
of qualitative properties that a good measure is intuitively
expected to satisfy and checking whether they are exhibited by
the proposed method (and the other methods in the literature),
while the latter revolves around examining the processing time
that is required for tuning the parameters of a scene segmen-
tation system when one of the aforementioned measures is
used for guiding the parameter selection process. A user study
involving 6 non-expert users was also conducted.

In order to compare the three measures, we implemented
four different scene segmentation techniques, and used them
on three datasets. The scene segmentation techniques include
the original STG technique [23], an STG variation that em-
ploys high-level audio event descriptors instead of low-level
visual descriptors, as described in [11], and two multi-modal
scene segmentation techniques [25], [26]. The video datasets
are a documentary, a movie and a news one. The first is made
of 15 documentaries (513 minutes in total) from the collection
of the Netherlands Institute for Sound & Vision, also used
as part of the TRECVID dataset in 2009. The second one is
made of six movies (643 minutes in total). Finally, the news
dataset consists of3 hour-long news videos. These datasets
include 3459, 6665 and 1763 automatically detected shots,
and 525, 357 and 57 manually identified ground truth scenes,
respectively. It should be noted that in the news and movie
datasets the ground truth scenes usually include many more
shots than in the documentary one.

All experiments reported in the sequel were carried out on a
PC with an Intel Core 2 Quad Q9300 CPU and 4GB of RAM.

C. Analysis of qualitative properties of evaluation measures

In this subsection the comparison of DED,FCO andFPR

according to certain qualitative properties is conducted. It
should be noted that since DED is a dissimilarity measure,
while FCO and FPR are similarity measures,1 − DED is
employed instead in the comparisons.

1) Symmetry in scene boundary misidentification errors:
An example of a misidentification error is demonstrated in Fig.
2. The scene boundary which exists at the end of shotS1 is
misplaced bye shots, being detected either at the end of shot
S1 − e or at the end of shotS1 + e. It is reasonable to expect
that a good evaluation measure does not discriminate between
these two cases, i.e. that it generates identical results without
taking into account whether the estimated scene boundary is
found before or after the actual one. As a matter of fact, there
is no rationale that could support any differentiation of the two
cases.

It can be proven that if a scene boundary that exists at the
end of shotS1 is erroneously detected at the end of shotS1−e,

the harmonic mean of Coverage and Overflow,FCO(v1, v2, e),
is:

FCO =
2

||v1||+ ||v2|| ·

||v2||(||v1||+ ||v2|| − e)(||v1|| − e)
(||v1||2 + 2||v1||||v2|| − e(||v1||+ ||v2||)) (5)

where ||v1|| and ||v2|| is the duration, counted in shots, of
the scene to the left and to the right of the scene boundary,
respectively. Based on the above equation,FCO(v2, v1, e)
gives the harmonic mean if the scene boundary is detected
at the end of shotS1 + e instead. Since this formula is
not symmetric,FCO generates different scores for equivalent
errors, e.g. for the case of||v1|| = 30, ||v2|| = 70 ande = 3,
FCO(v1, v2, e) = 0.7323 andFCO(v2, v1, e) = 0.4388.

Symmetry in scene boundary misidentification errors is also
not satisfied by measureFPR. When a scene boundary that
exists at the end of shotS1 is erroneously detected at the end
of shot S1 − e, the harmonic mean of Precision and Recall,
FPR, is:

FPR(v1, v2, e) =
Q(v1, v2, e)

Q(v1, v2, e) + e(||v1||+ ||v2|| − 1)
(6)

whereQ(v1, v2, e) = ||v1||2 + ||v2||2 + e2 − (2e + 1)||v1|| −
||v2|| + e. In the above equationFPR(v2, v1, e) gives the
harmonic mean if the scene boundary is detected at the end of
shotS1 + e. Equation (6) is not symmetric, because quantity
Q is not symmetric. Consequently, theFPR measure also
generates different distance scores for equivalent errors.

On the other hand, DED by definition does not discriminate
between these types of errors and produces in both cases a
similarity value proportional to the error magnitude:

DED(v1, v2, e) = DED(v2, v1, e) =
e

(||v1||+ ||v2||) (7)

In order toquantify the expected asymmetry, for all videos
belonging to the 3 datasets that we use in this work, pairs
of synthetic segmentations were constructed by introducing
symmetric misplacements of each ground truth scene bound-
ary. Specifically, starting from the ground truth segmentation
and considering one scene boundary at a time, this boundary
was misplaced bye and−e shots, respectively, wheree was
selected randomly from the integer values that are smaller
than the minimum distance of that particular scene boundary
from its two adjacent scene boundaries (so that the introduced
misplacement would not lead to a violation of the scene
convexity restriction). A single value ofe was of course used
for each pair of scene boundary misplacements, to ensure their
symmetry. Then,DED, FPR andFCO values were estimated
(always in the range0 to 100%) by comparing each synthetic
segmentation with the ground truth one, and subsequently the
DED, FPR and FCO differences were calculated for each
pair of synthetic segmentations that present symmetric errors.
The mean and standard deviation of these differences, post-
processed so as to simulate the case where25% of the true
scene boundaries of each video are misplaced in this way, are
reported separately for each video dataset in Table I.
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Dataset DED Diff. FPR Diff. FCO Diff.
(µ± σ) (µ± σ) (µ± σ)

Documentary 0 ± 0 0.83%± 1.62% 6.81%± 7.92%
Movie 0 ± 0 0.61%± 1.17% 5.17%± 5.4%
News 0 ± 0 0.34%± 0.47% 2.78%± 2.21%

TABLE I
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC SCENE BOUNDARY

MISIDENTIFICATION ERRORS.

S
1
 S
2

S
1
 +
 e
S
1
 -
e


30
 100


27
 100


F
CO
 = 0.7323


33
 100


F
CO
 = 0.4388


Ground Truth


Method 1


Method 2


F
PR
 = 0.949


F
PR
 = 0.9468


DED
 = 0.97


DED
 = 0.97


Shot Index


Shot Index


Shot Index


Shot Index


Fig. 2. An example of a misidentification error evaluation withFCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. QuantitiesS1 and S2 denote the shot
indices of the last shot of the first and second scene, respectively. While both
scene segmentation methods1 and 2 misidentify the scene boundary by3
shots, only DED generates symmetric results.

2) Symmetry of errors located at the beginning and the end
of a scene:This property is similar to the one discussed above.
A scene segmentation technique should not be evaluated
differently if it “crops” the beginning or the end of a specific
scene. An example of this is shown in Fig. 3.

In order to quantify the expected asymmetry magnitude
between errors taking place at the beginning and the end of
a scene, an experimental strategy analogous to the previous
subsection was followed, where symmetric errors were simi-
larly introduced to each pair of adjacent scene boundaries. The
mean and standard deviation of the resultingDED, FPR and
FCO differences, as in the previous experiment, are reported
separately for each video dataset in Table II.

Dataset DED Diff. FPR Diff. FCO Diff.
(µ± σ) (µ± σ) (µ± σ)

Documentary 0 ± 0 7.17%± 8.39% 18.8%± 14.36%
Movie 0 ± 0 9.2%± 12.87% 18.97%± 16.33%
News 0 ± 0 2.94%± 3.59% 9.92%± 11.25%

TABLE II
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC ERRORS AT THE

BEGINNING AND AT THE END OF A SCENE.

As demonstrated by the results of Table II and also the
example of Fig. 3, only DED satisfies this property. Employing
FCO or FPR leads to different (non-symmetric) performance
estimates, induced by the different lengths of the adjacent
scenes.
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Fig. 3. An example of a misidentification error evaluation withFCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. QuantitiesS1, S2 and S3 denote the
shot indices of the last shot of the first, second and third scene, respectively.
Method 1 misplaced the beginning of the second scene by25 shots, while
method2 misplaced the same scene’s end by25 shots. The two methods are
evaluated differently byFCO andFPR.

3) Satisfaction of metric property:In section III-A it was
proven that the DED measure is a metric. On the contrary,
FCO is not a metric, since it is not symmetric. For example,
if a video stream consists of100 shots and one scene and the
experimental segmentation identifies two equally-long scenes,
then FCO = 0.667. In the opposite case, i.e. when a video
stream includes two scenes of50 shots each and a scene seg-
mentation technique retrieves only one scene, thenFCO = 0.
So, generally

FCO(V1, V2) 6= FCO(V2, V1) (8)

where V1 and V2 are two segmentations of the same video
stream.

On the other hand, measureFPR satisfies the symmetry
property. This is proven by considering the definition of Recall
and Precision as the ratio of the intersection of the sets of
ground truth and experimental shot pairs belonging to the same
scene over the ground truthVG and the experimental setVE ,
respectively:

R(VG, VE) =
|VG ∩ VE |
|VG| , P (VG, VE) =

|VG ∩ VE |
|VE | (9)

FPR is definedas the harmonic mean of RecallR and
PrecisionP :

FPR(VG, VE) =
2

1
R + 1

P

=
2|VE ∩ VG|

|VE ∪ VG|+ |VE ∩ VG| (10)

FPR(VE , VG) estimatesthe similarity of the two segmenta-
tions. The corresponding distanceDPR(VE , VG) is given by
the following equation:

DPR = 1− FPR =
|VE ∪ VG| − |VE ∩ VG|
|VE ∪ VG|+ |VE ∩ VG| (11)

IEEE Transactions on Circuits and Systems for Video Technology, accepted for publication.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460



8

It is straightforwardly understood thatDPR(VG, VE) =
DPR(VE , VG) and as a result the measure exhibits the sym-
metry property. However, the distanceDPR does not generally
satisfy the triangular inequality. For example, let us suppose
that a video stream consists of four shots, and three different
segmentationsV1, V2 andV3 have been defined for it:

V1 = {1, 2}, {3}, {4}
V2 = {1, 2}, {3, 4}

V3 = {1}, {2}, {3, 4}
In the above equations, the brackets denote scene bound-
aries. For segmentationsV1 and V3, the intersection of shot
pairs that belong to the same scene is void. Consequently
DPR(V1, V3) = 1. On the other hand|V1∩V2| = |V2∩V3| = 1
while |V1 ∪ V2| = |V2 ∪ V3| = 2. As a resultDPR(V1, V2) =
DPR(V2, V3) = 1/3 and DPR(V1, V2) + DPR(V2, V3) <
DPR(V1, V3). So, the implicit solution spaces employed when
usingFPR, as well asFCO, are non-metric spaces.

D. Further experimental comparison of performance mea-
sures

1) Computational complexity:It can be deduced from the
FPR definition that the performance evaluation of a video
segmentation involvingN shots requiresO(N2) operations.
Note that these operations can be no more complex than
a summation and a logical AND. On the other hand, in
order to compute eitherFCO or DED, the construction of
the co-occurrence matrix is required. This matrix is built by
sequentially browsing all shots of the video and thus requiring
O(N) operations. The co-occurrence matrix has a size of
|AG| × |AE |, where|AG| and |AE | is the number of scenes
in the ground truth and the experimental segmentation, re-
spectively. After its estimation,FCO computation involves all
co-occurrence matrix elements, but only linear combinations
of them. So, the overall computational complexity ofFCO is
O(N) + O(|AG| · |AE |).

Finally, DED also employs the co-occurrence matrix, which
is decomposed into sub-videos using splitting boundaries.
Consequently, the overall complexity is ofO(N)+O(DED)
where O(DED) is the complexity related to the total sub-
video DED estimation. The theoretical determination of this
computational complexity is not a trivial task, since it depends
on the number of splitting boundaries, as well as the number
of ground truth and experimentally estimated scenes. More
specifically, if the|AG| ground truth boundaries are experi-
mentally estimated with a Recall rateR and a Precision rate
P , then the video will be divided intoR · |AG| + 1 sub-
videos. These sub-videos will include, in total,(1−R) · |AG|
ground truth scene boundaries and(1−P ) · |AE | experimental
scene boundaries that are not sub-video boundaries as well.
Typical values of Recall and Precision, as those given in [24],
are significantly over50%. If this baseline performance is
assumed and|AE | and |AG| are assumed both equal to40,
then each sub-video would contain on average less than1
ground truth and less than1 experimentally estimated scene
boundaries. So, in practical situations the DED algorithm

computational complexity is expected not to be significantly
higher thanO(N). But, it should be mentioned that the worse
case complexity is higher than the one related toFCO, since
the job assignment complexity is cubic.

An experimental evaluation of the computational complexity
of DED, FPR and FCO was carried out on the datasets
of section IV-B, and the results (expressed as the ratio of
FPR or FCO computation time over DEDs computation time)
are given in Tables III, IV and V. These tables demonstrate
the higher efficiency of the DED measure. The observed
differences between the three datasets are explained by the
fact that in the news and the movie datasets, the video streams
comprise more shots, but are decomposed into fewer and
longer ground truth scenes. Consequently, theFPR computa-
tional cost, which is fully determined by the number of shots,
increases, while the computational cost associated with the
browsing of the co-occurrence matrix remains unaffected.

Method [23] [11] [25] [26]
FPR / DED 1.1959 1.1229 1.2156 1.0506
FCO / DED 9.6109 9.1970 6.9088 7.577

TABLE III
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE

DOCUMENTARY DATASET.

Method [23] [11] [25] [26]
FPR / DED 5.133 3.1586 2.6934 2.8256
FCO / DED 4.0909 2.5779 3.2347 3.3698

TABLE IV
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE MOVIE

DATASET.

Method [23] [11] [25] [26]
FPR / DED 8.6751 8.34 8.6081 8.9471
FCO / DED 2.9818 2.8892 2.557 2.6029

TABLE V
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE NEWS

DATASET.

The efficiency of DED is to a great extent due to the
decomposition of the video to sub-videos (according to the
method of section III-C). This can be demonstrated if DED’s
computation time is contrasted with the computation time of a
DED variant that does not decompose the video to sub-videos.
The corresponding results are shown in Table VI. As will be
discussed in the next subsection, the computational complexity
that is associated with the evaluation of the measure plays a
critical role in the overall computation time that the parameter
tuning of a scene segmentation technique would require.

2) Parameter sampling density:The parameters of a scene
segmentation system, when no specific guidelines are avail-
able, are typically determined by search in the parameter
space; this involves a uniform sampling of the parameter
space [11]. This parameter tuning is conducted by varying
a parameter value that generates an error signal, where the
domain of the error signal is the parameter value space and
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Dataset Documentary Movie News
Non-optimized computation

time / Optimized 2.4964 11.9849 34.439
computation time

TABLE VI
COMPUTATION TIME WITHOUT DECOMPOSING THE VIDEO TO SUB-VIDEOS

DIVIDED BY COMPUTATION TIME WHEN DECOMPOSING THE VIDEO TO

SUB-VIDEOS ACCORDING TO SECTIONIII-C.

the values of the error signal are the distances of the resulting
segmentations from the ground truth one. The latter distance
is calculated using a segmentation evaluation measure. The
computation time required for this process is affected not only
by the computational complexity of the evaluation measures
but also by the required parameter sampling density.

The minimum sampling density is determined by the
Nyquist-Shannon sampling theorem as being proportional to
the spectrum bandwidth of the error signal (i.e., assuming that
it is a bandlimited signal, to its highest frequency). It should
be noted that when a signal is multi-dimensional, i.e. more
than one parameters are tuned at the same time, then the
Nyquist-Shannon sampling theorem is applied separately in
each different dimension. In order to determine the highest
frequency, a thresholding is required, since in theory the
spectrum of any signal limited in time is not limited in
frequency. Instead of employing a strict, arbitrarily chosen
threshold, we selected20 different thresholds, varying from
0.1% of the total spectrum power to2%, and averaged the
results.

Furthermore, when conducting the experimental analysis, it
is not the analog error signal that is taken into account but
inevitably a digital approximation of it, which is generated
using a manually chosen sampling rate. In order to prevent
error signal aliasing, the sampling rate used to generate it
should exceed the Nyquist-Shannon rate. This can not be
theoretically guaranteed, since it would require a priori knowl-
edge of the signal spectrum under examination. However, this
problem may be circumvented by relying on the fact that
when sampling exceeds the Nyquist-Shannon rate then the
bandlimited spectrum is identical and independent from the
sampling frequency. So, the adopted strategy was to double
the sampling points until the spectra of all three approximate
error signalsePR, eCO, eDED stabilized. This strategy is
summarized in Algorithm 2. It should be noted that the number
of samples doubles (Step 5) before the termination control
(Step 6) in order to provide extra accuracy to the spectra
estimation.

The experimental setup was identical to the one employed
for computational complexity, i.e. it included the four scene
segmentation techniques and the three different datasets. The
results (comparing the highest frequency of the error signal
spectrum when using DED,FPR andFCO) are shown in Ta-
bles VII, VIII and IX. These tables show that theFPR/DED
or FCO/DED bandwidth ratio is not so much dependent on
the dataset, but rather on the employed scene segmentation
technique. However, it can be seen that in all experiments,
only on two occasions the sampling rate of the DED error
signal was required to be greater than that ofFCO, while

Algorithm 2 Sampling RateEstimationSummary
1: The error signalsePR, eCO, eDED are estimated for the3

different distance measures and for parameter values from0
to a maximum valueT . The sampling rate is fixed toT/R0.
QuantityR0, which determines the initial sampling rate, is
a constant.

2: Initialization: S = 1, fPR = FFT (ePR), fCO =
FFT (eCO), fDED = FFT (eDED).

3: λ = T/(2S ·R0)
4: The error signals are recomputed by estimating their values

for the additional parameter values(T · i)/(2S−1 ·R0) + λ,
i = 0, 1, 2, ..., 2S−1 ·R0 − 1.

5: S = S + 1.
6: The FFTs of the error signals are re-estimated and com-

pared to the correspondingf variables. If all of them are
similar to the correspondingfs, the algorithm terminates
and the sampling is performed with rateT/(2S ·R0). Else,
the estimated FFTs become the newfs and the algorithm
continues from Step 3.

DED outperformsFPR for all examined methods and datasets.
Consequently, it can be concluded that by employing DED, the
sampling required to tune the system parameters is more sparse
than if FPR or FCO were employed. The total computational
gain is estimated by multiplying the corresponding gain values
from Tables III to IX. It can be seen that through the use of
DED the scene segmentation tuning becomes much faster, with
a speed up factor that reaches up to10− 15 times.

Method [23] [11] [25] [26]
FPR / DED 1.3511 1.1244 1.3173 1.5475
FCO / DED 1.023 1.6635 1.7217 2.0594

TABLE VII
BANDWIDTH OF FPR AND FCO OVER DED IN THE DOCUMENTARY

DATASET.

Method [23] [11] [25] [26]
FPR / DED 1.2605 1.0671 1.089 1.431
FCO / DED 0.923 1.7809 1.7685 1.7534

TABLE VIII
BANDWIDTH OF FPR AND FCO OVER DED IN THE MOVIE DATASET.

Method [23] [11] [25] [26]
FPR/DED 1.0582 1.0653 1.0608 1.109
FCO /DED 0.8438 1.1794 1.2316 1.3993

TABLE IX
BANDWIDTH OF FPR AND FCO OVER DED IN THE NEWS DATASET.

E. User Study

In addition to the above experiments, we conducted a user
study involving 6 non-expert users in order to further assess
how well the results of the proposed DED measure match the
expectations of human evaluators. For the needs of this study
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we randomly producedtriplets of synthetic segmentations for
a subset of the videos of our datasets, and then selected 20
of those triplets for which the three considered evaluation
measures disagree in the ranking of each triplet’s segmen-
tations (e.g. segmentation triplets for whichDED suggests
that the first segmentation is the most similar to the manually-
created ground-truth one, whileFPR and FCO suggest that
the second and the third one are most similar to the ground
truth, respectively). The 20 triples were shown one by one
to a set of 6 non-expert users, who independently viewed the
(segmented) videos and ranked each of them, without having
any knowledge of the correspondingDED, FPR and FCO

values. The agreement of the user rankings with the rankings
generated by each measure was evaluated using normalized
inversion count [27] and the results are shown in Table X.
It can be seen that DED has significantly better (i.e., lower)
scores thanFPR andFCO.

Segmentation EvaluationMeasure DED FPR FCO

NormalizedInversionCount 0.16 0.37 0.53

TABLE X
RESULTS OF THE CONDUCTED USER STUDY. NORMALIZED INVERSION

COUNT EXPRESSES HOW WELL THE OUTPUT OF EACH EVALUATION

MEASURE AGREES WITH THE RESULTS OF HUMAN EVALUATORS(LOWER

SCORES INDICATE BETTER AGREEMENT).

Finally, a few qualitative examples of scene segmentation
evaluation are given in Fig. 4, illustrating the values of the
FPR, FCO and DED measures in realistic scene segmentation
cases. These examples further emphasize the superiority of
the DED metric in producing evaluation results which are in
better agreement with the human perception of segmentation
goodness, compared toFPR andFCO.

V. CONCLUSION

In this work a novel scene segmentation evaluation measure
was presented. Furthermore, an implementation that computes
this measure with less than cubic complexity was introduced.
For testing the metric’s ability to model efficiently the human
performance rating, a number of required measure properties
were introduced. The proposed measure and two baseline per-
formance measures were comparatively evaluated with respect
to their compliance with these properties. Furthermore, an
experimental setup was used to examine the computational
cost that is associated with the parameter tuning of a scene
segmentation system, when this process is guided by one
of these evaluation measures. These results, together with
the results of a small user study that was also conducted,
demonstrate that the presented measure outperforms those
currently employed in the literature and provides an effi-
cient approach to comparing automatic scene segmentation
techniques and to guiding the optimization of their param-
eters. The software implementation of DED is available at
http://mklab.iti.gr/project/ded.
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