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Abstract—An approach to knowledge-assisted semantic video
object detection based on a multimedia ontology infrastructure
is presented. Semantic concepts in the context of the examined
domain are defined in an ontology, enriched with qualitative
attributes (e.g., color homogeneity), low-level features (e.g., color
model components distribution), object spatial relations, and mul-
timedia processing methods (e.g., color clustering). Semantic Web
technologies are used for knowledge representation in the RDF(S)
metadata standard. Rules in F-logic are defined to describe how
tools for multimedia analysis should be applied, depending on
concept attributes and low-level features, for the detection of
video objects corresponding to the semantic concepts defined in
the ontology. This supports flexible and managed execution of
various application and domain independent multimedia analysis
tasks. Furthermore, this semantic analysis approach can be used
in semantic annotation and transcoding systems, which take
into consideration the users environment including preferences,
devices used, available network bandwidth and content identity.
The proposed approach was tested for the detection of semantic
objects on video data of three different domains.

Index Terms—Knowledge-assisted analysis, multimedia ontolo-
gies, video analysis.

1. INTRODUCTION

HE RECENT progress in hardware and telecommunica-

tion technologies has resulted to a rapid increase of the
available amount of multimedia information. Multimedia con-
tent is used in a wide range of applications in areas such as con-
tent production and distribution, telemedicine, digital libraries,
distance learning, tourism, distributed CAD/CAM, GIS, and, of
course, on the World Wide Web. The usefulness of all these
applications is largely determined by the accessibility of the
content and as such, multimedia data sets present a great chal-
lenge in terms of storing, transmitting, querying, indexing, and
retrieving. To face such challenges it is not sufficient to just
develop faster hardware or to design more sophisticated algo-
rithms. Rather, a deeper understanding of the information at the
semantic level is required [1]. This is of particular importance in
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many emerging applications such as semantic transcoding [2],
where it is assumed that the user does not want to access all data,
but only data semantically useful. This requires the semantic
identification of the objects and events appearing in the content
s0 as to be in a position to match them with the user preferences.
In this way, the part of the content which is of interest to the user
is identified, isolated, and transmitted.

Although new multimedia standards, such as MPEG-4 and
MPEG-7 [3], provide the needed functionalities in order to
manipulate and transmit objects and metadata, their extraction,
most importantly at a semantic level, is out of the scope of the
standards and is left to the content developer. In the last two
decades, significant results have been reported regarding the
successful implementation of several prototypes [4]. However,
the lack of precise models and formats for object and system
representation and the high complexity of multimedia pro-
cessing algorithms make the development of fully automatic
semantic multimedia analysis and management systems a
challenging task [1].

This is due to the difficulty, often referred to as the semantic
gap, of mapping semantic concepts into a set of image and/or
spatiotemporal features that can be automatically extracted
from video data without human intervention [5]. The use of
domain knowledge is probably the only way by which higher
level semantics can be incorporated into techniques that capture
the semantics through automatic analysis. The various ap-
proaches exploiting domain-specific knowledge for multimedia
analysis consider two types of knowledge: implicit, as realized
by stochastic methods that exploit automatic learning capabil-
ities, and explicit, where knowledge encoded in some formal
representation is used to drive the extraction of high-level se-
mantics. The work in [6], where the problem of bridging the gap
between low-level representation and high-level semantics is
formulated as a probabilistic pattern recognition problem, and
[7], where fuzzy ontological relations and context aware fuzzy
hierarchical clustering are employed to interpret multimedia
content for the purpose of automatic thematic categorization of
multimedia documents, fall within the first category. Previous
work in the literature that exploits explicit domain knowledge
includes among others the approaches presented in [8], [9],
where a priori knowledge representation models are used as a
knowledge base that assists semantic-based classification and
clustering, and [10], in which semantic entities, in the context
of the MPEG-7 standard, are used for knowledge-assisted video
analysis and object detection, thus, allowing for semantic level
indexing.

1051-8215/$20.00 © 2005 IEEE



DASIOPOULOU et al.: KNOWLEDGE-ASSISTED SEMANTIC VIDEO OBJECT DETECTION

Most of the approaches presented include domain and appli-
cation dependent multimedia processing tools and algorithms
for performing the required analysis tasks [11], [12]. However,
the use of specific approaches that are heavily dependent on the
targeted domain application reduces the chances of exploiting
or extending such knowledge-assisted systems to different do-
mains. Furthermore, while some of them manage to formally
represent the knowledge about the domain, i.e., the objects and
the associated low-level features, they do not include algorithms
in this knowledge representation, thus, reducing their interoper-
ability and reusability. Work on building a unifying model of
all these aspects includes [8], where domain knowledge is used
to realize application and media independent content-based re-
trieval for multimedia databases, and [13], where Semantic Web
technologies are used in system integration to describe how
tools for analysis and visualization can be applied to different
data-type sources.

In this paper, an approach to knowledge-assisted semantic
video object detection based on a multimedia ontology infra-
structure is presented. More specifically, semantic and low-level
attributes of the objects to be detected in combination with
appropriately defined rules, determine the set of algorithms and
parameters required for the detection of the objects. Semantic
concepts in the context of the examined domain are defined
in an ontology, enriched with qualitative attributes (e.g., color
homogeneity), low-level features along with numerical data
generated via training (e.g., color models, also defined in the
ontology), object spatial relations and multimedia processing
methods (e.g., color clustering). Semantic Web technologies
are used for knowledge representation in the resource descrip-
tion framework schema (RDFS) language [14]. F-logic [15]
rules are defined to describe how tools for multimedia analysis
should be applied according to different object attributes and
low-level features, aiming at the detection of video objects
corresponding to the semantic concepts defined in the ontology.
Object detection considers the exploitation of object character-
istic features in order to apply the most appropriate detection
steps for the analysis process in the form of algorithms and nu-
merical data generated off-line by training (e.g., color models).
Furthermore, the incorporation of object spatial descriptions
in the domain ontology reduces the search space, allowing for
improved semantics extraction from multimedia content. Thus,
the proposed framework provides the needed functionality in
semantic transcoding [16] systems to match semantic objects
and events with the user’s interests and depending on the
network and device capabilities, to apply different types of
transcoding [17]. For example, it may be desirable to code only
those parts of the video containing interesting objects or to
code such interesting objects with higher quality.

The remainder of the paper is organized as follows. In Sec-
tion II, a detailed description of the proposed knowledge-as-
sisted analysis system for semantic video object detection is
given. Sections III and V describe the developed ontology
framework and its application to the Formula One domain
respectively, while in Section IV the low-level processing algo-
rithms employed for the analysis are described. Experimental
results are presented in Section VI. Finally, conclusions are
drawn in Section VII.
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II. KNOWLEDGE-ASSISTED MULTIMEDIA CONTENT ANALYSIS

Intense past research in the domains of knowledge represen-
tation and reasoning with knowledge has, over the last decade,
gained new interest in the context of the Semantic Web. New
initiatives such as RDFS [14] and OWL (Web Ontology Lan-
guage) [18] have been defined by the World Wide Web consor-
tium (W3C) in order to render meaning to information on the
web and allow for better methods of search and retrieval. As a
next step, inference rules and logic are to be used by intelligent
applications to derive new information from the already existing
one. Among the possible knowledge representation formalisms,
ontologies [19], providing a formal framework for a shared and
common understanding of a domain that can be communicated
between people and application systems, ontologies have be-
come key enabling technology for the Semantic Web.

Content-based analysis of multimedia requires methods
which will automatically segment video sequences and key
frames into image areas corresponding to salient objects (e.g.,
cars, road, people, field, etc), track these objects in time, and
provide a flexible framework for object recognition, indexing,
retrieval and for further analysis of their relative motion and
interactions. This problem of semantic video object detection
can be viewed as relating symbolic terms to visual information
by utilizing syntactic and semantic structure in a manner related
to approaches in speech and language processing [20]. More
specifically, low-level multimedia features (e.g., MPEG-7
descriptors) are assigned to semantic concepts and visual pro-
cessing algorithms are assigned to object attributes thus forming
an a priori knowledge base. Processing may then be performed
by relating high-level symbolic representations to extracted
features in the signal domain. Basing such a representation on
an ontology, one can capture both concrete and abstract rela-
tionships between salient visual properties. Additionally, the
ontological representation of the domain-specific knowledge
allows for the creation of interoperable machine-processable
video content semantic annotations.

Ontology modeling and ontology-based metadata creation
has addressed mainly textual resources for the past decades,
while in multimedia, ontologies have been mostly used in
the form of thesauri-aided approaches for manual multimedia
content annotation [21], [22]. However, acknowledging the im-
portance of coupling domain-specific and multimedia low-level
description vocabularies for analysis purposes has recently set
focus on using ontologies to drive the extraction of semantic
descriptions instead of only providing a formal structure for an-
notations. In [23], an object ontology coupled with a relevance
feedback mechanism, is introduced to facilitate the mapping
of low-level to high-level features and allow the definition of
relationships between pieces of multimedia information for
retrieval purposes. In [24] and [25], Semantic Web technologies
have been used to attach formal semantics to MPEG-7 meta-
data, thus making them accessible, re-usable and interoperable
with other domains.

In this paper, domain knowledge is combined with object
low-level features and spatial descriptions realizing an on-
tology-aided video analysis framework. To accomplish this,
F-logic rules are used to relate the extraction of the semantic
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Fig. 1. Overall system architecture.

concepts, the execution order of the necessary multimedia
processing algorithms and the low-level features associated
with each semantic concept, thus integrating knowledge and
intelligence in the analysis process. F-logic is a language that
enables both ontology representation and reasoning about
concepts, relations and instances [15], [26]. The general system
architecture, depicted in Fig. 1, consists of a knowledge base
(including the ontology schema, the respective domain instan-
tiation data and the rules), an inference engine, the algorithm
repository containing the necessary multimedia analysis tools
and the system main processing module, which performs the
analysis task, using the appropriate sets of tools and multimedia
features, for the semantic multimedia description extraction.
Ontology building is left to ontology and/or multimedia engi-
neering experts, while the results can be used in semantic video
indexing and retrieval, semantic annotation, transcoding and
personalization.

Following this approach, the multimedia analysis process de-
pends largely on the knowledge base of the system and as a re-
sult the method can be easily applied to different domains pro-
vided that the knowledge base is enriched with the respective
domain information. Enriching the knowledge base with spa-
tiotemporal object relations and event definitions would provide
the means for additionally supporting domain-specific seman-
tics extraction at event level on top of object level semantics
(e.g., a car getting off the road, a player scoring a goal).

By building this unifying model of all aspects of the semantic
multimedia analysis task, all its parts are treated as ontological
concepts. Consequently, different multimedia processing algo-
rithms can be tested by just defining corresponding instances
in the ontology and providing appropriate interfaces. In addi-
tion, new semantic concepts can be defined and be automati-
cally extracted by describing their attributes and corresponding
low-level features in the ontology and populating the knowledge
base with appropriate instances. Common ontology tools can be
used to edit and handle the proposed ontology infrastructure.

III. MULTIMEDIA ANALYSIS ONTOLOGY DEVELOPMENT AND
RULES CONSTRUCTION

In order to implement the knowledge-assisted approach
described in the previous section, an analysis ontology and
a domain ontology are constructed. The multimedia analysis
ontology is used to support the detection of domain specific
objects, while the domain specific ontology is used to represent

knowledge about the examined domain. The domain-inde-
pendent, primitive classes comprising the analysis ontology
serve as attachment points allowing the integration of the two
ontologies.

Object detection depends on their characteristic features
which are used to select the most appropriate algorithms for
the analysis process. Consequently, the development of the
proposed analysis ontology deals with the following concepts
(RDFS classes) and their corresponding properties, as illus-
trated in Fig. 2. Solid lines have been used to represent the
classes and properties currently employed by the proposed
system, while dotted lines have been used to represent poten-
tial extensions, demonstrating the flexibility and adaptation
capabilities offered by the system. Arrows not explicitly named
correspond to the subclass relation.

* Class Object: the superclass of all video objects to be de-
tected through the analysis process, i.e., the semantic ob-
jects defined in each domain ontology become subclasses of
Object after integration of the two ontologies takes place.
Each object instance comprises a model (prototype) for the
corresponding semantic object. The hasFeature property is
used to link an object instance to its visual description in
terms of low-level features and spatial behavior. Appro-
priate properties have been defined to represent the imple-
mented directional and topological object spatial relations,
i.e., above-of, below-of, left-of, right-of, and inside, adja-
cent-to, respectively. In Fig. 2, in order to maintain read-
ability the hasSpatialRelation property has been used to il-
lustrate where the used spatial relations are placed in the
ontology schema definition.

Class Feature: the superclass of visual low-level features
associated with each object. It is subclassed to Con-
nectivity, Homogeneity, and Size. The Connectivity
and Homogeneity classes are further subclassed to Full
Connectivity, Partial Connectivity, Non-Connectivity,
and Motion Homogeneity, Color Homogeneity classes
respectively.

¢ Class Feature Parameter, which denotes the actual
qualitative descriptions of each corresponding feature. It
is subclassed according to the defined features, i.e., to
Connectivity Feature Parameter, Homogeneity Feature
Parameter, and Size Feature Parameter.

Class Limit: it is subclassed to Minimum and Maximum
and through the hasLimit property allows to pose range
restrictions to the various parameters.
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Fig. 2. Multimedia analysis ontology.

* The Color Model and Color Component classes are used rent implementation the Mean Value and Standard Devi-

for the representation of the color information. The Y, Cb, ation classes.
Cr components of MPEG color space are transformed to * Class Motion Features is used to represent low-level infor-

the L, u, v components used for color representation in the mation regarding the object motion. Its subclass, Motion
applied low-level processing algorithms. Consequently, all Norm, is the the applied motion descriptor.

above mentioned color components are subclasses of Color * Class Algorithm: the superclass of the available processing
Component. algorithms (A1, Ao, ..., A,) to be used during the analysis
Class Distribution and Distribution Parameter represent procedure. This class is linked to the FeatureParameter
information about the type of distribution (e.g., Gaussian, class through the usesFeatureParameter property in order
uniform etc) and the necessary parameters for its descrip- to determine the argument list for each algorithm.

tion respectively. The specific parameters appear as sub- * Class Detection: used to model the detection process,
classes of Distribution Parameter, introducing in the cur- which in our framework consists of two stages. The first in-
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volves finding a set of regions which are potential matches
for the object to be detected, while the second one leads
to the selection of only one region that best matches the
criteria predefined for this object (e.g., size specifications).
Thus, a DetectionPart class is introduced and subclassed
to CandidateRegionSelection and FinalRegionSelection
classes. To define the set of algorithms comprising each
detection part the DetectionPart and Algorithm classes
are linked through the property hasDetectionStep.

Class Dependency: this concept addresses the possibility
that the detection of one object may depend on the detec-
tion of another, due to possible spatial (or temporal) rela-
tions between the two objects. For example in the Formula
One domain, the detection of the car could be assisted and
improved if the more dominant and characteristic region of
road is detected first. In order to differentiate between the
case where the detection of object O; requires the detection
of the candidate regions of object Os and the case where
the detection of object O, requires the entire final region of
object O3, the Dependency class is subclassed to the Par-
tialDependency and TotalDependency classes.

As mentioned earlier, the sequence of algorithms to be
applied for the detection of each object is directly depen-
dent on its available characteristic attributes, i.e., visual
low-level features and spatial behavior. This association is
determined through a set of properly defined rules repre-
sented in F-logic. There are three kind of rules currently
used in the presented approach including: rules to define the
mapping between algorithms and features, which implicitly
determine the execution order of an object detection steps
(algorithms), rules to determine each algorithm input pa-
rameters values and rules to deal with object dependencies
as explained above. The general form of each of the above
defined rule categories is the following.

“IF an object O has features F'y (| F2 (... F, as part of its
qualitative description THEN algorithm A, is a step for the
detection of O.”

“IF an object O has feature /' AND O has algorithm A as
detection step AND A uses feature /' THEN A has as input
the parameter values of F.”

“IF an object O; has dependency on object O AND ob-
ject Oy has as CandidateRegionSelection part the set of
algorithms Scrs = {A1, As, ..., A} AND as FinalRe-
gionSelection part the set Sprs = {A], A5, ..., AL} re-
spectively THEN IF the dependency is partial execute the
set of algorithms included in S¢rs before proceeding with
the detection of O; ELSE execute both Scrs and Sgrs
before proceeding with O detection.”

The rules as defined up to this point do not define explicitly
the execution order of the sequence of the algorithms comprising
a particular object detection. However, during the analysis
process, specific priority values are given to the corresponding
algorithms, which affect the actual order of execution. This
is accomplished by defining an additional parameter for the
hasDetectionStep property in the defined rules. Thus, when the
detection of an object O requires the execution of algorithms
Ay and A,, during rules evaluation appropriate priorities are
assigned to determine which of the two should be executed first.
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In Section V, the realization of the aforementioned method-
ology is exemplified for the Formula One domain. The low-level
processing algorithms employed for the different analysis tasks
are first described in the following section to allow for better
understanding.

IV. COMPRESSED-DOMAIN VIDEO PROCESSING

A. Compressed-Domain Information Extraction

To enable the efficient processing of large volumes of vi-
sual data, the proposed knowledge-based approach is applied to
MPEG-2 compressed streams. The information used by the pro-
posed algorithms is extracted from MPEG sequences during the
decoding process. Specifically, the extracted color information
is restricted to the discrete cosine (DC) coefficients of the mac-
roblocks of I-frames, corresponding to the Y, Cb, and Cr com-
ponents of the MPEG color space. These are transformed to the
CIE Luv color space and are employed for color clustering, as
will be discussed in the sequel. Additionally, motion vectors are
extracted for the P-frames and are used for generating motion
information for the I-frames via interpolation. P-frame motion
vectors are also necessary for the temporal tracking in P-frames,
of the objects detected in the I-frames [27]. Due to the limited
information that is required by the proposed approach, only par-
tial decompression of the video stream is necessary.

B. I-Frame Processing

The procedure for detecting the desired objects in I-frames,
for which as previously discussed both color and motion in-
formation can be extracted is based on applying a number of
low-level processing algorithms. The most important such algo-
rithms of the analysis ontology used in the proposed knowledge
assisted analysis framework are described in the sequel.

e K-means clustering algorithm. Color clustering is per-
formed by identifying up to eight dominant colors in the
frame, as done by the MPEG-7 Dominant Color descriptor
[28], and using them to initialize a simple K-means al-
gorithm, as in [29]. For a frame ¢, this results to the
generation of preprocessing mask R, which contains a
number of nonconnected color-homogeneous regions. This
mask can be used for model-based selection of semantic
objects for which the homogeneity attribute is described
in the ontology by the Color Homogeneity class and
additionally the connectivity attribute is described by the
Non-Connectivity class.

» Four connectivity component labeling algorithm. For
objects whose connectivity attribute is described in the
ontology by the Full Connectivity class, the four connec-
tivity component labeling algorithm is applied to the RN®
mask to generate a preprocessing mask REC featuring
connected color-homogeneous components. In the case of
partly connected objects, described by the Partial Con-
nectivity class, the four connectivity component labeling
algorithm is also applied and subsequently the information
in masks RN¢ and REC is combined to generate suitable
preprocessing masks in accordance with the descriptions
in the ontology, e.g., “color-homogeneous object b may
be represented by more than one connected component,
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but each should account for at least 3% of the total area of
the color cluster”. This specific restriction is represented
in the ontology using the hasLimit property of the Fea-
tureParameter class and an appropriate instance of the
Min class.

e Earth Mover’s Distance (EMD). Color-model-based se-
lection of the region corresponding to a semantic object
described by the Color Homogeneity class is performed
using a suitable preprocessing mask and the EMD [30].
The EMD computes the distance between two distribu-
tions, which are represented by signatures, and is defined
as the minimum amount of work needed to change one
signature into the other. The notion of “work” is based on
the user-defined ground distance, which is the distance
between two features; in this work, the Euclidean distance
is employed to this end. The signatures involved in the
computation of the EMD are defined as

S ={sj = (mj,w;)}

where m; represents a d-dimensional point (e.g., the three

mean color values corresponding to a histogram bin) and

w; is the weight associated with this point (e.g., the nonzero

value of the corresponding histogram bin; empty bins can

be omitted). For each examined region of the appropriate
preprocessing mask (e.g., RN, REC), its histogram is cal-
culated and is treated as its signature. Regarding the color-
model signature, a set of a few points in the three-dimen-
sional color space and the corresponding nonzero values
of the continuous model (e.g., Gaussian {(p,o0r)}) are
easily extracted, given the continuous model. The region
for which the model-cluster EMD is minimum is selected
as representative of the semantic object and is marked with

a distinct label in the final mask R}

Motion-based clustering algorithm. For objects whose

homogeneity attribute is described in the ontology by

the Motion Homogeneity class, motion-based grouping
of color homogeneous regions is performed rather than
motion-based clustering. Thus, color clustering is initially
performed using the K-means algorithm. The four con-
nectivity component labeling algorithm is subsequently
applied if their connectivity is described by the Full

Connectivity class. Then, motion based grouping of the

components of the corresponding preprocessing mask is

performed, similarly to [31].

* Region motion estimation algorithm. Region motion esti-
mation is performed using the macroblock motion vectors
extracted from the compressed stream and global motion
compensation. The latter is necessary for the calculation of
the object motion when the camera itself is moving. To this
end, the global motion is estimated from the macroblock
motion vectors using an iterative rejection procedure based
on the bilinear motion model [32].

C. P-Frame Processing

In order to detect semantic objects in P-frames in the absence
of color information, temporal macroblock tracking can be per-
formed using the motion information associated with them in
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the compressed stream and the final semantic labeling mask
extracted for the preceding frame. In this work, the temporal
tracking is based upon the work presented in [33], where ob-
jects are marked manually at first, by selecting their constituent
macroblocks, and subsequently tracked in the compressed do-
main using the respective macroblock motion vectors.

More specifically, let 7(-) be the tracking operator realizing
the tracking process of [33], which for an input macroblock
at time ¢t — 1 outputs the corresponding macroblock (or mac-
roblocks) at time ¢. The correspondence is established by es-
timating the overlapping of the examined macroblock with its
spatially adjacent ones, which are determined using the dis-
placement indicated by its motion vector. Consequently, in order
to perform temporal tracking of the detected semantic objects,
the 7(-) operator is applied to all macroblocks of the semantic
labeling mask that were identified as belonging to the corre-
sponding semantic objects.

V. DOMAIN KNOWLEDGE INFRASTRUCTURE

Following the proposed methodology, the multimedia anal-
ysis ontology described in Section III and the low-level pro-
cessing algorithms described in Section IV can be applied to
a specific video stream in order to automatically detect objects
appearing in the stream. For this purpose, a domain ontology is
needed to provide the vocabulary and background knowledge
of the examined domain, i.e., the semantically significant ob-
ject concepts and their properties. In the context of video un-
derstanding this maps to the important objects, their qualitative
and quantitative attributes and their spatial relations. Populating
the domain ontology results in obtaining a set of instances that
comprise the prototypes (models) for the semantic objects to be
detected. To perform semantic object detection, the domain on-
tology is merged with the analysis ontology on the basis of the
semantically equivalent concepts of Object, Feature, and Fea-
ture Parameter defined in both ontologies as will be explained
in the following.

As mentioned earlier, the proposed approach will be demon-
strated on the Formula One domain. Alternative domains such
as soccer video (with objects like field, player, ball) and beach
vacations (with objects like sea, sky, sand) can be analyzed using
the same multimedia analysis ontology and the appropriate do-
main ontology, as presented in the experimental results section.
The set of visual low-level and spatial descriptions associated
with each semantic object drive the applied analysis tasks, i.e.,
the differences in the domain object definitions indicate the dif-
ferent processing methods that should be applied for their iden-
tification. Consequently, the attributes to be included in each
object domain ontology definition are selected on the basis of
their suitability as distinctive characteristics for the analysis to
follow.

A. Formula One Domain Ontology

Following the aforementioned, the object concepts def-
initions, which subclass the Object class defined in the
multimedia analysis ontology, for the Formula One domain are
the following.
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 Car: a motion homogeneous, fully connected region inside
the Road object whose motion norm must be above a min-
imum value and whose size can not exceed a predefined
maximum value.

* Road: a color homogeneous, fully connected region, whose
size has to exceed a predefined minimum value and addi-
tionally to be the largest such region in the video.

¢ Grass: a color homogeneous, partly connected region with
the requirement that each of its components has a minimum
predefined size and is spatially related to the Road and
Sand objects through the adjacent-to relation.

* Sand: a color homogeneous, partly connected region, with
the requirement that each of its components has a size ex-
ceeding a predefined minimum and additionally is adja-
cent-to the Road and Grass objects.

A snapshot of OntoEdit [34] containing the result of merging
the multimedia analysis ontology described in Section III and
the described Formula One domain ontology, is illustrated in
Fig. 3. As can be seen, the developed domain ontology focuses
mainly on the representation of object visual attributes (e.g.,
connectivity, homogeneity) and spatial relations and in the cur-
rent version does not include spatiotemporal modeling and event
definitions. The left part visualizes the concept hierarchy, while
on the right part instantiations of different subparts of the re-
sulting ontology are shown. More specifically, for each of the
defined domain objects the features, spatial relations and de-
pendencies can be seen, as well as how the actual values cor-
responding to the color prototypes of object Grass are associ-
ated with it. Support is provided for multiple visual low-level
and spatial definitions, since real world objects tend to have dif-
ferent instantiations. Consequently, providing more than one ob-
ject models, e.g., color models, proves advantageous in terms
of allowing for more complete object description as further dis-
cussed in the experimental results section.

B. Rules for the Formula One Domain

The mapping of the generic content rules to domain specific
ones is quite straightforward and derives directly from the video
processing methodology detailed in Section I'V. As follows from
Section IV, color clustering is the first step for the detection of
any of the three objects. Consequently, a rule of the first category
without any condition is used to add the k-means algorithm to
the CandidateRegionSelection part of all domain objects de-
tection, and more specifically as the first one to be executed.

Similarly, since the EMD algorithm is used for evaluating the
degree of matching between two color models, the detection for
the defined as color homogeneous domain objects includes the
EMD algorithms in their CandidateRegionSelection part.

“IF [(Object O hasFeature ColorHomogeneity) AND (O

hasDetection D)

AND (D hasDetectionPart P) AND (P is instance of

CandidateSelectionPart)]

THEN [P hasDetectionStep EMD].”

As another example let us consider the construction of a
rule to determine the parameters used as input for the EMD
algorithm when applied for the detection of a specific color
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homogeneous object O;. As was mentioned before, the EMD
computes the distance between two distributions represented
by signatures.

“IF [(Object O hasDetection D) AND (D hasDetection-
Part P)

AND (P hasDetectionStep EMD) AND (O hasFea-
tureParameter C)

AND (C is instance of ColorModel) AND (C hasColor-
Component T)

AND (T hasDistribution R) AND (R hasDistributionPa-
rameter V)]

THEN [EMD usesFeatureParameter V].”

Having an ontology representation of the a priori knowledge
regarding the object qualitative (i.e., visual and spatial descrip-
tions) and quantitative descriptions as well as properly defined
rules to deal with the algorithmic issues of the actual processing,
the way to communicate this knowledge to the video analysis
system has to be established. To accomplish this, appropriate
queries have to be formulated and communicated to the knowl-
edge base in order to retrieve the required knowledge. Queries
are also written in F-logic. The queries are of three types, in
correspondence to the three rule categories: queries to retrieve
the algorithms required for the detection of a particular object,
queries for obtaining the values required as input for an algo-
rithm, and queries considering the potential object dependen-
cies.

In the following, an example query asking the algorithms re-
quired for the detection of object Car and its output are pre-
sented, assuming that the object Road has already been de-
tected.

“FORALL Object O,Part P, Order N, Algorithm A such
as (O is instance of Car)

AND (O hasDetection D) AND (D hasDetectionPart P)
AND (P hasDetectionStepy A)

RETURN O, A, P, N.”

The answer consists of a list of quartets. The variable Part
is used to identify whether an algorithm belongs to the Can-
didateRegionSelection or the FinalRegionSelection detection
part, using the values 1.0 and 2.0, respectively, while the vari-
able Order refers to execution order. After obtaining the list of
algorithms required for the detection of object Car, the values
comprising each algorithm input have also to be retrieved from
the knowledge base, by appropriate queries formulation.

Object = TemplateCar Algorithm = Kmeans_ins

Part = 1.0 Order = 1.0

Object = TemplateCar Algorithm = FourConnectivityCompo-
nentLabeling_ins

Part= 1.0 Order = 2.0

Object = TemplateCar Algorithm =
tion_ins

Part= 1.0 Order = 4.0

Object = TemplateCar Algorithm = MotionDifference_ins
Part= 2.0 Order = 5.0

Object = TemplateCar Algorithm = FindSize_ins

RegionMotionEstima-
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5. @ColorFeatureParameter (=) €3 Grass_ColorModel @ hasParametervalue('12,54")
@ ColorModel # hasColorComponent{Grass_L) 0 Road_u_dev
(). @MationFeaturePar ameter # hasColorComponent(Grass_u; ) Road_v_dev
@ Motionhorm # hasColorComponent(Grass_v) ) Grass_u_dev
=} @ ConnectivityFeatureParameter [+ €5 Sand_CalorMadel # hasParameterValue('4,73")
... @PartialConnectivityFeatureParameter [ ) Grass_v_dev
- @ hasParameter¥alue{"13.92")
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Fig. 3.

Part= 2.0 Order = 7.0

Object = TemplateCar Algorithm = SizeRestriction_ins

Part= 2.0 Order = 8.0

Object = TemplateCar Algorithm = MotionBasedClustering_ins
Part= 2.0 Order = 9.0

Object = TemplateCar Algorithm = SpatialRestrictions_ins
Part= 2.0 Order = 15.0

As illustrated, the query resulted in the sequence of algo-
rithms that have to be executed in order to detect objects be-
longing to the semantic class Car. The nonsequential values of
the variable Order reflect the fact that not all algorithms avail-
able in the repository are needed for a particular object detec-
tion. Instead, as previously mentioned, the required algorithms
are determined according to the definitions included in the do-
main ontology and the corresponding rules. Furthermore, al-
though there is a dependency between the Car and Road ob-
jects, no algorithms are returned to account for the detection of
the Road object since it is assumed to have already been de-
tected; thus, the algorithm that checks consistency with the spa-
tial descriptions as defined in the domain ontology can be ap-
plied directly.

The ontological representation of the domain knowledge al-
lows the formulation of other queries as well, such as “which

OntoEdit snapshot illustrating the result of merging the multimedia analysis ontology and the Formula One domain ontology.

TABLE 1
OBJECT COLOR MODELS USED FOR THE FORMULA ONE DOMAIN
Object | pr Pu B oL oy Ty
Road | 53.51 | 0.43 0.77 | 6.61 | 3.06 | 4.64
4294 | -1.61 -1.61 5.84 1.54 | 4.01
47.08 | -0.97 1.61 6.06 3.20 | 3.79
59.94 | 1.90 1.79 5.86 2.19 4.28
70.58 | -5.89 | -17.32 | 7.15 | 1.63 | 4.35
64.72 | 0.16 2.97 6.59 1.07 | 3.86
56.30 | -4.05 | -2.52 | 15.87 | 3.05 | 5.48
50.06 | -2.92 | -9.01 | 12.28 | 2.29 8.79
59.63 | 3.79 1.09 9.58 | 21.93 | 9.19
57.14 | -18.75 | -32.35 | 14.84 | 8.60 | 13.59
Grass | 46.80 | -3.32 | 19.38 | 12.84 | 4.73 | 13.92
Sand | 76.64 | 2.96 8.25 | 10.78 | 2.85 | 6.56

of the objects are connected and color-homogeneous” or “what
type of distribution characterizes the color components of the
road” etc., as would for any ontology repository. However, this
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Fig. 4. Formula One video results. Macroblocks identified as belonging to no one of the domain semantic objects are shown in white.

kind of information is not practically useful in terms of the pre-
sented analysis. It must be noted that query formulation, as well
as ontology development is left to knowledge and/or multimedia
engineers, as also mentioned in Section II. Consequently, the
system complexity is transparent to end users who exploit the
system output to perform search and retrieval tasks in the se-
mantically annotated content.

VI. EXPERIMENTAL RESULTS

The proposed approach was tested in the Formula One, soccer
and beach vacations domains. For these domains, appropriate

domain ontologies were defined. In all cases, the exploitation of
the knowledge contained in the system ontology and the associ-
ated rules resulted to the application of the appropriate analysis
algorithms using suitable parameter values, for the detection of
the domain specific objects. The OntoEdit ontology engineering
environment [34] was used for ontology creation. Inference and
query services are realized using the OntoBroker inference en-
gine [35]. Since OntoBroker uses F-Logic as its internal rep-
resentation language and OntoEdit supports the representation
of the developed ontologies in RDFS, DAML, or F-Logic, the
latter was chosen as the output language. It must be noted that
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TABLE II
NUMERICAL EVALUATION FOR THE FORMULA ONE DOMAIN
Proposed approach Region-based extension of [36]

Object | correct detections | false detections | missed | correct detections | false detections | missed
Road 97% 2% 81% 5% 14%
Grass 90% % 70% 19% 11%
Sand 88% 8% 63% 23% 14%

Car 74% 22% 43% 24% 33%

Input Frame

Fig. 5.

this is only a matter of notation for representation uniformity.
The RDFS ontologies could have been used directly as Onto-
Broker input as well.

As described in the following, a variety of MPEG-2 videos
of 720 x 576 pixels were used for testing and evaluation of the
knowledge assisted semantic video object detection system.
The presented experimental results are for both I-frames and
P-frames, where for the latter the tracking algorithm of [33] as
described in Section IV has been applied.

For the Formula One domain, our approach was tested on
a one-hour video. As was discussed in Section V, four objects
are defined for this domain. For those objects whose homo-
geneity attribute is described in the ontology by the Color
Homogeneity class, the employed color models are presented
in Table I. These models were extracted from a training set
of approximately 5 min of manually annotated Formula One
video consisting of various selected parts including different
shots where the objects of interest appear. Since we assume the
model to be a Gaussian distribution for each one of the three
components of the color space, the color models were calcu-
lated from the annotated regions of the training set accordingly.
Regarding the road object, significant color variations can be
observed, thus, better detection performance may be attained

Initial Segmentation

Semantic Labeling

Indicative initial segmentation results without the use of domain knowledge and corresponding final results of the proposed framework.

TABLE III
OBJECT COLOR MODELS USED FOR THE SOCCER DOMAIN
Object 1753 Lo I orL Oy oy
Field 58.00 | -14.39 | 54.59 | 4.79 | 2.70 | 4.13
Spectators | 36.08 | -2.14 | 0.81 | 9.71 | 7.15 | 14.11

using multiple models. For this purpose, ten color models were
used in this work for the road object, each calculated from dif-
ferent temporal segments of the employed training set. In this
case, the distance used for evaluating the similarity of a region
with the road model defined in the ontology is defined as the
minimum of the EMD distances between the region color sig-
nature and the road color models. The employed color models
are presented in Table I. Results for the Formula One domain
are presented both in terms of sample segmentation masks with
the extracted semantic labels showing the different objects de-
tected in the corresponding frames (Fig. 4) as well as numerical
evaluation of the results over a twenty-minute segment of the
test set (Table II).

In the masks of Fig. 4, macroblocks identified as belonging to
no one of the four defined objects are shown in white. The initial
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Fig. 6. Soccer video results. Macroblocks identified as belonging to no one of the domain semantic objects are shown in white.

segmentation results before application of the knowledge-as- TABLE IV
sisted processing are illustrated in Fig. 5 to demonstrated the NUMERICAL EVALUATION FOR THE SOCCER DOMAIN

added value of the proposed knowledge-assisted analysis. Com-
parison of the latter with the results of a region-based extension

Object correct detections | false detections | missed

of a learning approach, based on a Bayes classifier [36], are also Field 100% 0% 0%
shown in Table II. Player 82% 5% 13%
' For the soccer domal.n, the .followmg semantic objects were Spectators 0% 2% 28%
introduced to the domain specific ontology.
* Player: A motion homogeneous, fully connected region in- imum value and whose size can not exceed a predefined

side object Field whose motion norm must be above a min- maximum value.
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Fig. 7. Pixel-domain boundary refinement of moving objects.

* Field: A color homogeneous, fully connected region,
whose size has to exceed a predefined minimum value and
additionally to be the largest such region in the video.

* Spectators: A color homogeneous, partly connected re-
gion, adjacent-to object Field, with the requirement that
each of its components has a minimum predefined size.

The proposed semantic analysis and annotation framework was
tested on a half-hour video. A training set of approximately 5
min was employed and a single color model was extracted for
each of the color homogeneous objects (Table III) in a fashion
similar to the one illustrated for the Formula One domain. Seg-
mentation masks with semantic labeling for this domain are
shown in Fig. 6. Numerical evaluation of the results over a fif-
teen-minute segment of the test set for this domain is given in
Table IV.

Since the proposed approach was applied to MPEG-2 com-
pressed streams, the produced masks are rather coarse as il-
lustrated by the presented results. However, the approach can
be easily applied to uncompressed streams as well, if the tar-
geted application poses such requirements. In order to provide
pixel-level accuracy, appropriate algorithm instances need to
be defined, either for a pixel-level segmentation to replace the
compressed domain one currently used or for a pixel-level re-
fining algorithm to be applied as a post-processing step. Indica-
tive results of the application of the pixel-level mask refinement
method of [27] to the blocky masks generated by the proposed
compressed domain object detection framework are illustrated
in Fig. 7.

Segmentation masks and corresponding labels are presented
for the beach vacations domain in Fig. 8, using the following
domain definitions:

* Sea: A color homogeneous, fully connected region which

is below-of object Sky.

¢ Sky: A color homogeneous, fully connected region which
is above-of objects Sea and Sand.

.
-

Block-level Labelling
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Pixel-level Labelling

* Sand: A color homogeneous, partly connected region,
which is adjacent-to object Sea.

The beach vacation domain provides, additionally, a concrete
example of the benefits gained from enriching domain knowl-
edge with spatial information. As can be seen the semantic ob-
jects Sea and SKky are correctly recognized, although having
similar low-level features, due to their different spatial behavior
which is reflected in the domain ontology definitions.

It must be emphasized that only the domain ontology has to
be redefined in order to apply the analysis and annotation tasks
to a different domain, whereas the multimedia analysis ontology
and the rules remain unaltered.

VII. CONCLUSION

In this paper, we have presented an ontology-based approach
for knowledge-assisted domain-specific video analysis. Such
knowledge involves qualitative object attributes, quantitative
low-level features generated by training, object spatial relations
as well as multimedia processing methods. Rules in F-logic are
defined to describe how tools for multimedia analysis should be
applied, depending on object attributes and low-level features,
for the detection of video objects corresponding to the semantic
concepts defined in the ontology. A coherent architecture is
achieved by using an ontology to describe both the analysis
process and the domain of the examined videos. The analysis
procedure, as defined by the developed ontology and rules, was
applied to Formula One, soccer, and beach vacations videos and
was seen to produce satisfactory results. The same methodology
could be easily applied to different domains by using appro-
priate domain ontologies. The followed multimedia analysis
approach provides a framework for ontology-based annotation
of multimedia content enabling semantic transcoding and key
Semantic Web functionalities such as querying, retrieval and
reasoning.



1222

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 10, OCTOBER 2005

Input Frame

Sky Sea
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sand I

Fig. 8. Beach vacations video results. Macroblocks identified as belonging to no one of the domain semantic objects are shown in white.

Future work includes the enhancement of the domain on-
tology with more complex object representations, including ad-
ditional low-level descriptors and spatiotemporal relations that
will allow the definition of semantically important events in the
domain of discourse. Further exploration of low-level multi-
media features (e.g., use of the MPEG-7 standardized descrip-
tors) is expected to lead to more accurate and, thus, efficient
representations of semantic content. The above mentioned en-
hancements will allow for more meaningful reasoning, thus,
improving the efficiency of multimedia content understanding.
Another possibility under consideration is the use of a more
expressive language, e.g., OWL, in order to capture a more re-
alistic model of the specific domain semantics.
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