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Abstract. A drawback of current computer vision techniques is that,
in contrast to human perception that makes use of logic-based rules,
they fail to benefit from knowledge that is provided explicitly. In this
work we propose a framework that performs knowledge-assisted analy-
sis of visual content using ontologies to model domain knowledge and
conditional probabilities to model the application context. A bayesian
network (BN) is used for integrating statistical and explicit knowledge
and perform hypothesis testing using evidence-driven probabilistic infer-
ence. Our results show significant improvements compared to a baseline
approach that does not make any use of context or domain knowledge.

1 Introduction

The advances in information technology have reduced the spatial and temporal
obstacles in information exchange, allowing users to easily generate and exchange
large amounts of digital data. However, the limitations of machine understanding
makes it difficult for automated systems to interpret and index all this content
in a manner coherent with human cognition. With respect to multimedia, the
difficulty of mapping a set of low-level visual features into semantic concepts has
motivated the use of domain knowledge.

In our work we introduce a framework for enhancing image analysis using
different types of evidence. As evidence we define the information that can be
used to support or disproof a hypothesis. In our framework (Fig. 1), we use vi-
sual stimulus, application context and domain knowledge to drive a probabilistic
inference process that verifies or rejects a hypothesis made about the semantic
content of an image. The application context and the domain knowledge are con-
sidered to be the a priori/fixed information, while the visual stimulus depends
on the examined image and is considered to be the observed/dynamic informa-
tion. We model the layer of evidence so as to effectively combine both a priori
and observed information. More specifically, first we analyze the visual stimulus
to obtain conceptual information. Then, we represent domain knowledge and
application context in a computationally enabled format. Finally, we combine
everything in a bayesian network (BN) that is able to perform inference based
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on soft evidence. In this way, we provide the means to handle aspects like causal-
ity (between evidence and hypotheses), uncertainty (of the extracted evidence)
and prior knowledge. The main contributions of our work are: a) We combine
ontologies and bayesian networks for the purpose of allowing in a probabilistic
way the fusion of evidence obtained at different levels of image analysis. b) We
show how global and regional evidence can be probabilistically combined within
a BN that incorporates domain knowledge and application context.
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Fig. 1. Functional relations between the different components of our framework.

2 Related Work

Semantic image analysis has been addressed by mapping low-level visual fea-
tures (i.e., color, shape) to high-level descriptions (i.e., concepts), without using
domain knowledge or context. Some indicative works include [1] where the au-
thors use the mean of global image features to represent the gist of a scene, and
[2] where scene classification is performed using bayesian classifiers. However,
the suboptimal performance of these solutions has motivated the exploitation of
knowledge and context.

Towards this objective the authors of [3] introduce “Multijects” as a way to
map time sequence of multi-modal, low-level features to higher level semantics
and “Multinets” for representing higher-level probabilistic dependencies between
“Mutlijects”. In the same lines, [4] proposes a framework for semantic image un-
derstanding that integrates in the same knowledge-based inference framework
(based on BNs), both low-level and semantic features. Similarly, [5] uses low-
level features and a BN to perform indoor versus outdoor scene categorization.
However, the absence of a methodology for integrating domain knowledge into
the inference process is what differentiates these works from our approach. Fi-
nally there are also works that utilize ontologies as a means to encode domain
knowledge. [6] presents a method for combining ontologies and BNs in an effort
to introduce uncertainty in ontology reasoning and mapping, while [7] proposes
a knowledge assisted image analysis scheme that combines local and global in-
formation. However, none of these works attempt to couple ontology-based ap-
proaches with probabilistic inference algorithms for combining concept detectors,
context and knowledge.
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3 Framework Description

Visual Stimulus: For analyzing the visual stimulus we employ supervised learn-
ing where a classifier is trained to identify a concept, provided that a sufficiently
large number of examples are available. If NC denotes the set of domain con-
cepts, a concept detector can be implemented using a classifier Fc that is trained
to recognize instances of the concept c ∈ NC . If Fc is a probabilistic classifier,
we have Fc(Iq) = Pr(c|Iq). These probabilities Pr(c|Iq) are essentially the soft
evidence that are provided to the BN for triggering probabilistic inference.
Domain Knowledge: Let R be the set of binary predicates that are used
to denote relations between concepts and O the algebra defining the allowable
operators. We use OWL–DL to construct a structure KD = S(NC , R,O) that
describes how the domain concepts are related to each other. DL stands for
“Description Logics” [8] and constitutes a specific set of constructors such as in-
tersection, union, disjoint, complement, etc. Our goal is to use these constructors
for explicitly imposing semantic constraints in the process of image interpreta-
tion that can not be captured by typical machine learning techniques.
Application Context: Let app denote the application specific information used
to guide the analysis mechanism in searching for evidence, and W = [Wi,j ] the
matrix whose elements quantifies the effect of concept ci on cj . Then, we con-
sider the application context X = S(app,W ) to consists of both app and W . Wij

is implicitly extracted from data and encoded into the Conditional Probability
Tables (CPTs) of the BN to influence the probabilistic inference process.
Evidence-driven Probabilistic Inference: To perform inference: a) we use
KD to decide which of the concepts should be treated as evidence cE , b) we
use app to decide where to physically search for them, c) we apply Fc on Iq
to obtain the degrees of confidence for the concepts in cE , d) we use app and
KD to decide which of the concepts should constitute the hypotheses set cH , e)
we provide as soft evidence the confidence degrees for the concepts in cE and
trigger probabilistic inference in the BN, f) we propagate evidence beliefs using
the network’s inference tracks R and the causality quantification functions Wij ,

and g) we calculate the posterior probabilities for all concepts in cH . If h́(Iq, ci)
are the posterior probabilities of the network nodes and ⊗ is an operator (e.g.,
max) that depends on the specifications of the analysis task, semantic image

interpretation is achieved based on the formula: c = arg⊗ci∈cH (h́(Iq , ci)).

4 Ontology to Bayesian Network mapping

Our motive for using BNs is to estimate the posterior probabilities of the con-
cepts in the hypothesis set cH , using the observed confidence degrees of the
concepts in the evidence set cE . The work in [6] describes a probabilistic exten-
sion to OWL ontology based on BNs and define a set of structural translation
rules to convert this ontology into a directed acyclic graph. Here, we propose an
adaptation of this method that learns the network parameters from data.



4

Network Structure: The transformation of an ontology to a BN takes place in
two stages. In the first stage, the BN incorporates the hierarchical information of
the ontology by transforming all concepts into nodes (called concept nodes ncn)
with two states (i.e., true and false). An arc is drawn between two concept nodes
in the network, if and only if they are connected with a superclass-subclass re-
lation in KD and with the superclass-to-subclass direction. At the second stage,
the BN incorporates the semantic constraints of the ontology by creating a con-
trol node ncl for each DL constructor (see [6] for details). The constructors
that can be handled are owl:intersectionOf, owl:unionOf, owl:complementOf,
owl:equivalentClass and owl:disjointWith.
Parameter Learning: Once the structure is fixed, each concept node ncn needs
to be assigned a prior probability if it is a root node or a CPT if it is a child
node. In [6] these probabilities are set by domain experts. The drawback of this
approach is that apart from requiring human intervention when switching to a
different domain, it is also likely to introduce bias in the initial conditions of
the BN. In our work, we propose a variation of this approach where the neces-
sary probabilities are learned from data (i.e., concept label annotations of the
images). The conditional probabilities of all concept nodes are learned by em-
ploying the Expectation Maximization (EM) algorithm on sample data. The last
step is to manually set the CPTs of all control nodes ncl as shown in [6] and set
the belief of the true state equal to 100%. This is done in order to enforce the
semantic constraints into the probabilistic inference process.

5 Framework functional settings

Our framework implements two different image analysis tasks: (a) Image cate-

gorization selects the category concept ci that best describes an image Iq as a
whole. In this case, a hypothesis is formulated for each of the category concepts,
that is h(Iq). Global classifiers are applied to estimate the initial probability
for each hypothesis. For this task, the application context app determines which
evidence should be taken from the image local information (e.g., knowing that
a region depicts road is a piece of contextual information that can help decid-
ing whether the image depicts a Seaside or a Roadside scene). Local classifiers
are applied to the pre-segmented regions I

sj
q , in order to generate the pieces of

evidence E(Iq) that will be used to trigger probabilistic inference. (b) Local-

ized region labeling, assigns labels to pre-segmented image regions with one
of the available regional concepts ći. In this case, a hypothesis is formulated
for each of the available regional concepts and for each of the image segments.
Local classifiers are used to estimate the initial probability for each of these
hypotheses. Here, the contextual information app is considered to be the image
as a whole (e.g., knowing that an image depicts a Roadside scene can help in
deciding whether a specific region depicts sea or road). The confidence degrees
of the category concepts ci constitute the pieces of evidence for this task E(Iq),
which are used to trigger probabilistic inference. In practice, our framework can
be used to improve region labeling when there is a conflict between the decisions
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suggested by the global and local classifiers by favoring the hypotheses with
maximum positive impact on its posterior probability.

The low level processing of visual stimulus consists of visual features ex-
traction, segmentation and learning the concept detection models. Four MPEG-
7 visual descriptors [9], namely Scalable Color, Homogeneous Texture, Region
Shape, and Edge Histogram, were employed as described in [7]. Segmentation
was performed using an extension of the Recursive Shortest Spanning Tree algo-
rithm [10] and Support Vector Machines (SVMs) with a gaussian radial kernel
function were employed for learning the concept detection models.

6 Experimental Study

In our study we demonstrate the performance improvements achieved by ex-
ploiting context and knowledge compared to baseline detectors that rely solely
on visual information. A collection of 648 annotated at global and region detail
comprised our dataset3. Half of the images were used for training the classifiers
Fc and learning the BN parameters and the other half for testing. The resulting
BN is depicted in Fig. 2.

Fig. 2. The nodes in the black frame are used to model the disjointness between the
Tennis and all other category concepts in the domain.

Image categorization is evaluated using three configurations. In the base-
line configuration CON1 we assess the performance of image categorization
based solely on visual stimulus. The second configuration CON2 uses context
and knowledge in order to extract the existing evidence and facilitate the process
of evidence driven probabilistic inference. The BN employed in this configura-
tion is the one depicted in Fig. 2 without the nodes enclosed by the black frame.
The third configuration CON3 takes into account the semantic constraints of
the domain. In this case, the utilized BN is extended with the addition of the

3 http://mklab.iti.gr/project/scef
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control nodes (i.e., the nodes enclosed by the black frame of Fig. 2) that are used
for modeling the disjointness between Tennis and all other category concepts.
The reason for treating CON2 and CON3 as two different configurations was
to examine how much of the improvement comes from the use of regional evi-
dence and concept hierarchy information (CON2), and how much comes from
the enforcement of the semantic constraints (CON3).

In both CON2 and CON3 the analysis process unfolds as follows. Initially,
we formulate the hypotheses set using all category concepts. Then, we search for
all possible regional concepts determined in KD (i.e., ∀cj ∈ CL) before deciding
which of them should be used as evidence. This approach requires the application
of all available classifiers, global and local, for producing one set of confidence
values for the image as a whole, LKglobal = {Pr(ci|Iq) : ∀ci ∈ CG} and one
set per identified image region, LKlocal = {Pr(cj |I

sk
q ) : ∀cj ∈ CL & ∀sk ∈

S}. All values of LKglobal and the maximum per column values of LKlocal are
introduced as soft evidence into the BN nodes. Then, the network is updated to
propagate evidence impact and the concept corresponding to the node with the
highest resulting posterior probability (among the category concepts), is selected
to categorize the image (i.e., in this case ⊗ ≡ max, see Section 3). Fig. 3(a) shows
that CON2 outperforms CON1 by ≈ 5% on average. The running example of
Fig. 4 demonstrates how evidence collected using regional information (CON2)
can correct a decision erroneously taken by a global classifier that relies solely
on visual stimulus (CON1). Finally, using CON3 the performance is further
increased with an average improvement of ≈ 6.5%, compared to the baseline
(CON1). Given that the semantic constraint was enforced between the Tennis

and all other concepts in CG, the improvement in performance comes from the
correction of the test samples that were originally mis-categorized as Tennis.
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Fig. 3. a) F-Measure scores for image categorization using CON1,CON2 and CON3
configurations, and b) F-Measure scores for localized region labeling.

Localized Region Labeling was performed using the BN of Fig. 2 (without
the nodes enclosed by the black frame). Our framework is put into force when
there is a conflict between the decisions suggested by the global and local classi-
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Fig. 4. Running example of image categorization using the framework’s CON2 config-
uration. The evidence extracted from image regions help to correct a misclassification
error about the image category.

fiers. Let Child(ck) = {cj : k →parent j} be the subset ofCL corresponding to the
child nodes of ck ∈ CG. Let also LKglobal = {Pr(ci|Iq) : ∀ci ∈ CG} be the set of
global confidence values for image Iq and LKsw

local = {Pr(cj |I
sw
q ) : ∀cj ∈ CL} be

the set of local confidence values for a region Iswq of the image. A conflict occurs
when cl /∈ Child(cg) with g = argmaxi(LKglobal) and l = argmaxj(LK

sw
local).

In the first case we follow the suggestion of the global classifiers and select
cg. Then, the local concept cl is selected such that l = argmaxj(LK

sw
local) and

cl ∈ Child(cg). The confidence values corresponding to cg and cl are inserted
into the BN as evidence and the overall impact on the posterior probability of
the hypothesis that Iswq depicts cl is measured. In the second case, we follow the

suggestion of the local classifiers and select c
ĺ
, such that ĺ = argmaxj(LK

sw
local).

The confidence values of the global classifiers are examined and the cǵ with
ǵ = argmaxi(LKglobal) and cǵ ∈ F (c

ĺ
) is selected. The confidence values cor-

responding to c
ĺ
and cǵ are inserted into the network and the overall impact

on the posterior probability of the hypothesis that Iswq depicts c
ĺ
is measured.

Eventually, the values of the two different cases are compared and depending
on the largest, cl or cĺ is chosen to label the region in question (i.e., this is the
functionality of ⊗ operator described in Section 3, for this task). If no conflict
occurs, the concept corresponding to the local classifier with maximum confi-
dence is selected. Fig. 3(b) shows that when using the proposed framework an
average increase of approximately 4.5% is accomplished. Finally, Table 1 shows
how our method compares with two state-of-the art methods [11] and [12] on
the MSRC dataset4.

4 http://research.microsoft.com/vision/cambridge/recognition
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Table 1. Comparison with existing methods in object recognition
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Textonboost [11] 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 58

PLSA-MRF/P [12] 52 87 68 73 84 94 88 73 70 68 74 89 33 19 78 34 89 46 49 54 31 64

Prop. Fram. 32 55 87 40 73 96 57 56 50 76 8 64 38 12 46 5 51 12 8 29 18 44

7 Conclusions

Our experiments have shown that the amount and nature of the semantic in-
formation that can be used to enhance image interpretation depends on the
characteristics of the domain. Although the knowledge structure and the causal-
ity relations were useful in all cases, the semantic constraints originating from the
domain were only able to help when the imposed rules were sufficiently concrete
(e.g., the disjointness between “Tennis” and all other category concepts). On the
contrary, attempts to incorporate semantic constraints that were less strict from
the visual inference point of view didn’t lead to performance improvements.
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