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Abstract Recent advances in semantic image analysis have brought forth generic method-
ologies to support concept learning at large scale. The attained performance however is
highly variable, reflecting effects related to similarities and variations in the visual manifes-
tations of semantically distinct concepts, much as to the limitations issuing from considering
semantics solely in the form of perceptual representations. Aiming to enhance performance
and improve robustness, we investigate a fuzzy DLs-based reasoning framework, which
enables the integration of scene and object classifications into a semantically consistent in-
terpretation by capturing and utilising the underlying semantic associations. Evaluation with
two sets of input classifiers, configured so as to vary with respect to the wealth of concepts’
interrelations, outlines the potential of the proposed approach in the presence of semantically
rich associations, while delineating the issues and challenges involved.

Keywords fuzzy reasoning, semantic image analysis, semantic integration, fuzzy DLs,
inconsistency handling

1 Introduction

Extracting semantic image descriptions is an intricate problem, challenging researchers for
decades in the quest for generalisable, yet robust, approaches to alleviate the so called se-
mantic gap and support content management services at a level closer to user needs [1-3].
A factor partially accountable for the challenges pertaining to this endeavor lies in the very
nature of it, namely in the fact that it involves the handling of significant amount of impre-
cise and incomplete information. Leaving out issues related to the subjective interpretations
that different users may attribute to conveyed meaning, intention, etc., imprecision relates
intrinsically to a number of tasks including segmentation, feature extraction, intra- and inter-
class variability. Inevitably, managing imprecision is critical not only when dealing with the
aforementioned tasks, but also for the subsequent processing that realises the extraction of
semantic descriptions.
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Towards this direction, machine learning approaches have gained growing popularity in
the past couples of years, as they provide convenient means for discovering and handling
knowledge either incomplete or too complex to be explicitly handled. Support Vector Ma-
chines (SVMs) and Bayesian networks constitute characteristic examples in this direction,
allowing one to learn in a generic fashion classifiers for a significant number of concepts
(referring to objects, events, scene descriptions, etc.) [4—7]. Despite the reports of success-
ful applications, the performance remains still highly variable and deteriorates rather dra-
matically as the number of supported concepts increases. Among the principal causes for
the variable performance are effects related to similarities between visual manifestations of
semantically distinct concepts and to the variance in the possible manifestations a single
concept may have. These effects issue directly to a large extent from the fundamental as-
sumption underlying learning approaches, i.e. that the addressed semantics is captured to a
satisfactory degree by features pertaining to their visual manifestations.

Since in many cases semantics goes beyond the capacity of perceptual features, dis-
crepancies result between the learned associations and the intended ones. Consequently, the
learnt classifiers often result in the extraction of complementary, overlapping, incomplete,
as well as conflicting descriptions. Evidence can be found not only in individual evaluations
of research studies in the relevant literature, but also in large scale benchmarks, such as
the TRECVID challenge [8], sponsored by the National Institute of Standards and Technol-
ogy (NIST). Two main challenges confronted repeatedly in the series of annual TRECVID
evaluation activities include the deterioration of performance as the number of addressed
concepts increases and the variable correspondence between the semantics of the content
retrieved using the learned detectors and the semantics alleged by the detectors per se [9,
10]. The efforts during the last edition included the enhancement of robustness, even for
a reduced number of concepts, through the utilisation of complementary information be-
yond visual features, either in the form of taxonomic relations as captured in the LSCOM
ontology [11] or through detector combinations [12, 13].

Induced by the aforementioned, we investigate the utilisation of formal semantics in
order to interpret the outcome of statistically learned classifiers into a semantically consis-
tent image interpretation. Focusing on approaches deploying perceptual similarity against
learned concept models, viz. where the confidence of the extracted descriptions reflects the
membership to a concept class, we propose a fuzzy Description Logic (DL) based frame-
work to capture and reason over the extracted descriptions, while handling the underlying
vagueness. The input image classifications may be either scene or object level, and their
interpretation is realised in three steps, namely designation of scene level characterisation,
identification and resolution of inconsistencies with respect to possibly conflicting classifi-
cations, and enrichment, where additional inferred descriptions are made explicit.

The rest of the paper is structured as follows. Section 2 explicates the reasons that mo-
tivated our investigation into a fuzzy DL based reasoning approach and outlines the con-
tribution with respect to the relevant literature. Section 3 provides a brief introduction into
fuzzy DLs and delineates features pertaining to reasoning within the context of image in-
terpretation. Section 4 presents the proposed framework architecture and the details of the
individual reasoning tasks involved. Evaluation is given in Section 5, where the proposed
framework is assessed against two experimental settings that consider input classifications
of loose and rich semantic associations. Additionally, initial results are presented with re-
spect to enriching the background knowledge with co-occurrence information in the form of
fuzzy implication. Finally, Section 6 summarises the paper and discusses future directions.



2 Motivation and Contribution

Learning based approaches provide a number of appealing traits, such as generic learning
mechanisms and the capability to capture and utilise associations hidden in the examined
input data whose explicit handling might otherwise be too complex and strenuous to be ef-
fective. Despite their unquestionable role in semantic image analysis tasks, one cannot over-
look the limitations that conduce to the variability of the attained performance. As mentioned
previously, the problem lies to a large extent in the rather poor utilisation of the semantics
underlying the learned concepts and in the imprecision involved in the constituent tasks.
Aiming to enhance performance, we focus on a twofold goal, addressing the utilisation of
concept semantics while providing the means to cope with imprecision.

The use of explicit knowledge for the purpose of introducing concept semantics is not a
new idea. Going back to the 80s and early 90s one finds an extensively rich literature [14,15]
that investigates a wide gamut of knowledge representation schemes, as rigorous as first or-
der logic [16] and as intuitive as the early semantic networks [17]. Among the weaknesses of
the early knowledge-directed paradigms were the lack of common representations and rea-
soning mechanisms that prohibited interoperability and reuse of knowledge. The Semantic
Web (SW) initiative! changed the scenery, advocating explicit semantics and corresponding
representation languages to capture meaning in a formal and interoperable fashion. Since
2004, the Resource Description Framework Schema (RDFS) [18] and the Web Ontology
Language (OWL) [19] constitute formal W3C recommendations, while substantial interest
has revived in Description Logics (DLs), as it underpins the semantics of the SW languages.

In analogy to the different expressivity features provided by the various knowledge rep-
resentation formalisms, a critical factor regarding the handling of imprecision concerns the
nature of its semantics. Examining the relevant literature, imprecision may manifest in the
extracted descriptions either as uncertainty regarding the presence of a specific entity (e.g.
the presence of a sky region), or as vagueness regarding the degree to which the statement
about the presence of the entity is true. Uncertainty characterises probabilistic approaches
such as Bayesian nets, while vagueness is encountered in approaches that deploy similar-
ity (distance) metrics against feature models acquired through training, such as SVMs. The
confidence values of the latter reflect the extent of matching against the learned concept
models, and as such each model can be taken as a fuzzy set, with distance metrics serving
the role of the membership function.

Based on the aforementioned, our initial specifications consisted in the selection of a
representation formalism with well-defined semantics and the designation of the targeted
imprecision semantics. Perceptual-based similarity approaches constitute a fundamental el-
ement in statistical learning for image interpretation, and as such in the current investigation
we focused on vague rather than probabilistic information. In this context, the concrete in-
centives of the proposed fuzzy DLs based reasoning framework issue form the specific traits
characterising the application of SVM-based concept classifiers, namely contradictory de-
scriptions that pertain to semantically different interpretations and incomplete descriptions,
even at the presence of corresponding classifiers.

To put into perspective in an intuitive manner the implications involved, let us consider
two example images and the respective descriptions extracted using the SVM based classi-
fiers of [20], shown in Fig. 1. The extracted descriptions are expressed following the fuzzy
DL notation. A statement of the form (im : 3contains.Concept;) > n; denotes that the image
represented by the individual im contains a region depicting an instance of Concept; with a
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> N .

(image : Countryside_buildings) > 0.65 (image : Rockyside) > 0.42

(image : Roadside) > 0.57 (image : Countryside_buildings) > 0.52
(image : Rockyside) > 0.44 (image : Seaside) > 0.51
(image : Forest) > 0.45 (image : Forest) > 0.52
(image : Seaside) > 0.47 (image : Roadside) > 0.71
image : Icontains.Sand) > 0. image : Icontains.Sky) > 0.
i 3 ins.Sand) > 0.66 ] 3 ins.Sk 0.98
(image : 3contains.Sky) > 0.95 (image : 3contains.Sea) > 0.73
(image : 3contains.Person) > 0.62 (image : 3contains.Person) > 0.60
(image : 3contains.Foliage) > 0.70 (image : Icontains.Sand) > 0.75

Fig. 1 Example outdoor images and respective descriptions extracted following SVM-based analysis.

degree > n;, while a statement (im : Concept j) > n; denotes that the image at scene level
constitutes an instance of Concept; to a degree > n;. As illustrated more than one scene
level concepts may be assigned to a single image, and the same may be the case for the
concept classifiers performing at object level. Furthermore, we note that since object level
classification is performed per image segment, it is possible to have more than one assertions
referring to the same concept with varying degrees.

In the case of the first image, the scene level concept Countryside_buildings appears
as the prevalent one. This is not only because the corresponding scene description is the
one with the highest degree among the extracted scene level descriptions, but also because
the object level descriptions neither contradict it nor imply preference of any other scene
description. To assess the latter, one needs to be aware of the logical associations of the con-
cepts involved. Even in this example, where the utilisation of semantics has the same effect
as selecting the description with the highest confidence, the potential for additional enhance-
ment is manifested. Specifically, exploiting the semantics of the Countryside_buildings con-
cept, one can infer that the image contains a building depiction, thus that there is a missing
assertion that needs to be added. Analogously, one can determine that the extracted Sand
description is semantically unrelated, and hence should be removed.

Moreover, the exploitation of semantics enables the overall image description to be fur-
ther enriched, allowing the addition of descriptions referring to concepts such as Landscape
and Outdoor. The latter, though quite trivial for the considered example, can be of great
value in the general case as it alleviates the need for training and learning detectors for all
concepts of interest, as long as they are semantically connected to other concepts. We note
that in the absence of confidence degrees, it would not be possible to acquire ranked esti-
mations regarding the plausibility of the different interpretations. As a result, on one hand
all classifications would be rendered equally probable, and preference could be established
only on the grounds of the descriptions that would have to be removed (respectively added),
risking rather artificial interpretations. On the other hand, depriving all information about
perceptual similarity would leave out substantial knowledge regarding the validity of the
choices considering the removal or addition of descriptions.



Similar considerations apply for the case of the second image. Taking into account solely
the explicit scene level descriptions, the Roadside assertion appears to be the more plausi-
ble. Going through the object level descriptions and taking into account the semantics of
the concepts involved, the simultaneous presence of Sea and Sand descriptions entails the
presence of a Beach scene, an implication that implicitly contradicts the dominant Road-
side assertion. The remaining object level classifications, i.e. the Person and Sky ones, do
not provide any additional knowledge regarding the plausibility of scene level descriptions.
Hence, since the implied confidence with respect to Beach appears to be larger than the told
degree of Roadside, it would be desirable to be able to assess Beach, and by consequence
Seaside, as the more plausible image interpretations.

The aforementioned examples, though quite simplistic, outline the potential and moti-
vation for employing explicit semantics while providing the means to handle imprecision.
Furthermore, they designate additional specifications regarding the selection of an appropri-
ate knowledge representation formalism, namely the ability to capture expressive semantic
associations (including disjointness, subsumption, conjunction) and to handle the vague-
ness introduced by the accompanying degrees. Based on these considerations, we chose
to investigate a reasoning framework based on fuzzy Description Logics (DLs) [21-23] as
they present two very appealing traits. First, they are strongly related to OWL (particu-
larly the Lite and DL species); thus they benefit from the Semantic Web initiative towards
knowledge sharing, reuse and interoperability, both regarding the background knowledge
comprising the domain semantics and the produced image annotations. Second, extending
classical DLs, they provide the means to handle vagueness in a formal way, while providing
for well-defined reasoning services. The current stage of the relevant literature, presented
in the next subsection, elucidates further the motivation underlying the proposed reasoning
framework, and outlines its contribution.

2.1 Relevant Work

Going through the relevant literature, one notices that despite the significant amount of im-
precision involved, a substantial share of the reported logic-based investigations towards
the use of explicit knowledge adopts crisp approaches. In the series of works presented in
[24,25], crisp DLs are proposed for inferring complex descriptions that are modelled in the
form of aggregates, i.e. conceptual entities modelled by parts satisfying specific constraints.
Interpretation is realised as a deductive process, assuming the availability of primitive de-
scriptions that do not contradict each other. Crisp DLs are also considered in [26], in combi-
nation with rules, for video annotation; again, possible conflicts or missed descriptions are
not addressed. In [27] DLs are used to interpret perceptual descriptions pertaining to colour,
texture and background knowledge into semantic objects. To this end a pseudo fuzzy algo-
rithm is presented to reason over the calculated feature values with respect to the prototypical
values constituting the definition of semantic objects. In [28], DLs have been combined with
rules in order to perform abductive inference over crisp descriptions and acquire plausible
interpretations, which are ranked using cost criteria involving the number of assertions that
can be explained and the number of assertions that need to be hypothesised.

There also exist ontology-based approaches that focus more on formalising the transi-
tion from low-level descriptors to domain concepts include [29],[30] and [31]. Ontology lan-
guages are used to represent both domain specific concepts and visual features such colour,
texture and shape, and to link them in a formal fashion. Although such approaches can
be very useful for purposes of sharing and reusing knowledge regarding low and high level



relations, the reasoning supported with respect to logical relations among the high-level con-
cepts is not addressed. This is not a matter of the limited datatype support currently provided
by ontology languages, but in principle because of the non logical nature of the problem at
hand, i.e. the estimation of distance between a given data structure that constitutes a feature
model and the measurable feature values.

Indicative works addressing probabilistic information include the following. In [32], a
probabilistic approach is suggested as a possible solution to the handling of the ambiguity
introduced during the analysis stage; however, no description of relevant experimentation or
evaluation is provided. Other works that address probabilistic knowledge include Markov
logic networks [33], where first order logic is combined with graphical probabilistic models
into a uniform representation; although tested on knowledge about the university domain,
the experiences drawn are applicable to information extractions tasks such as image in-
terpretation too. In [34], a Bayesian approach is proposed in order to model and integrate
probabilistic dependencies among aggregates connected by hierarchical relations, within a
DLs scene interpretation framework; however, no evaluation results are available as imple-
mentation is still under way. In [35], a probabilistic framework for robotic applications is
presented that tackles uncertainty issuing from noisy sensor data and missing information,
employing relational hidden Markov models for the purpose of spatio-temporal reasoning.

We stress out again the discrimination between the probabilistic and the fuzzy perspec-
tive, as this is critical for the motivation and grounding of the reasoning approach proposed
in this paper. A probability of 0.5 regarding a positive sea classification denotes our igno-
rance with respect to its presence or not; it does not imply anything about how blue the
sea may be. A degree of 0.5 on the other hand, denotes how close the colour of this sea
region is with respect to the specific colour attached to the notion of sea in the given context.
For further reading on the two perspectives the reader is referred to [36]. Consequently, ap-
proaches such as the aforementioned ones that address probabilistic knowledge are in fact
complementary to the aspects considered in this paper.

Finally, there are works utilising fuzzy DLs, and in this sense closer to the proposed
fuzzy DLs based framework. Specifically, fuzzy DLs have been proposed in [37] for the
purpose of semantic multimedia retrieval; the fuzzy annotations however are assumed to be
available. In the context of semantic analysis, fuzzy DLs have been only recently explored
in [38], where fuzzy DLs are used for inferring semantic concepts based on part-of relations
and merging of the respective image regions, and in [39] for document classification; none of
the approaches however addresses the possibility of inconsistency in the initially extracted
descriptions.

Given the aforementioned, the contribution of the fuzzy DLs based reasoning framework
presented in this paper can be summarised in the following.

— The uncertainty, in the form of vagueness, which characterises learning-based extracted
descriptions is formally handled and intergraded in the process of image interpretation.
Thus, the valuable information encompassed in the extracted degrees can be utilised for
computing and ranking the different plausible interpretations.

— The inconsistencies, explicit or implicit, which issued from conflicting descriptions are
identified and resolved, contrary to the assumption taken by relevant works regarding
consistent initial classifications.



3 Fuzzy DLs

Description Logics (DLs) [40] is a family of knowledge representation formalisms charac-
terised by logically grounded semantics and well-defined inference services. Starting from
the basic notions of atomic concepts and atomic roles, arbitrary complex concepts can be
described through the application of constructors (e.g., =, I, V). Terminological axioms
(TBox) allow to capture equivalence and subsumption semantics between concepts and re-
lations, while real world entities are modelled through concept (a : C) and role (R(a,b))
assertions (ABox). The semantics of DLs is formally defined through an interpretation /.
An interpretation consists of an non-empty set A’ (the domain of interpretation) and an
interpretation function ./, which assigns to every atomic concept A a set A’ C A’ and to
every atomic role R a binary relation R' C A’ x A’. The interpretation of complex concepts
follows inductively [40].

In addition to the means for representing knowledge about concepts and assertions, DLs
come with a powerful set of inference services that make explicit the knowledge implicit
in the TBox and ABox. Satisfiability, subsumption, equivalence and disjointness constitute
the core TBox inferences. Satisfiability allows to check for concepts that correspond to the
empty set, subsumption and equivalence check whether a concept is more specific or re-
spectively identical to another, while disjointness refers to concepts whose conjunction is
the empty set. Regarding the ABox, the main inferences are consistency checking, which as-
sesses whether there exists a model that satisfies the given knowledge base, and entailment,
which checks whether an assertion ensues from a given knowledge base.

Fuzzy DLs consider the extension of DL languages with fuzzy set theory [41,42]. More
specifically, in the case of a fuzzy DL language, a TBox is defined as a finite set of fuzzy
concept inclusion and equality axioms, while the ABox consists a finite set of fuzzy asser-
tions. A fuzzy assertion [21] is of the form @ : C >t n and (a,b) : R < n, where < stands
for >, >, <, and <2. Assertions defined by and > are called positive assertions, while
assertions defined by and < are called negative.

A fuzzy set C C D is defined by its membership function (t¢), which given an object
of the universe D returns the membership degree of that object with respect to the set C. By
using membership functions, the notion of the interpretation function is extended to that of
a fuzzy interpretation function. In accordance to the crisp DLs case, the fuzzy interpretation
function is a pair I = (A’,.) where A’ is a non-empty set of objects called the domain of
interpretation, and ./ is a fuzzy, this time, interpretation function which maps: an individual
a to an element o € AL, i.e., as in the crisp case, a concept name A to a membership func-
tion A’ : AT — [0, 1], and a role name R to a membership function R’ : A’ x AT —[0,1] [21,
22]. Several fuzzy operators exist in the literature that implement the functions (t-norms, co-
norms, negation and implication) which extend the classical Boolean conjunction, disjunc-
tion, negation and implication to the fuzzy case. Table 1 shows the corresponding semantics
for the language f~SHIN under Zadeh logic. The reasoning services definitions are adapted
analogously. For example, concept satisfiability requires the existence of an interpretation
under which there will be an individual belonging to this concept with a degree n € (0, 1].

Two main efforts exist currently that address formally both the semantics and the cor-
responding reasoning algorithms. In [23,43,44], the DL language SHIN has been extended
according to fuzzy set theory leading to the so called f-SHIN. The fuzzy extensions address
the assertion of individuals and the extension of the language semantics. In [45], a fuzzy

2 Intuitively a fuzzy assertion of the form a : C > n means that the membership degree of the individual a
to the concept C is at least equal to n.



Table 1 Fuzzy interpretation of DL constructors under Zadeh semantics [23].
TI=1
17=0
(=0 =1-Cl(d)
(C N DY =min{C!(d),D!(d)}
(C UDY =max{C/(d),D!(d)}
(VR.CY =inf,_, max{1 —R’(fl,d ),C/’(d )}
@R.LCY =sup,_, min{R!(d,d),C'(d )}

extension of SHOIN(D) is presented, which constitutes a continuation of earlier works of
the authors on extending ALC, SHIF, and SHIF(D) to fuzzy versions [21,22]. In addition
to extending the SHOIN(D) semantics to f-SHOIN(D), the authors present a set of interest-
ing features: concrete domains as fuzzy sets, fuzzy modifiers such as very and slightly, and
fuzziness in entailment and subsumption relations.

Additionally to the theoretic foundations for the fuzzy extensions, respective reasoning
algorithms have been presented and implemented, namely the Fuzzy Reasoning Engine’
(FiRE) and the fuzzyDL* engine. FiRE [38] supports querying an f-SHIN knowledge base for
satisfiability, consistency, subsumption, and entailment, under Zadeh’s semantics; general
concept inclusions, roles and datatype support are among the planned future extensions.
fuzzyDL [46] supports fuzzy SHIF semantics extended by the features aforementioned. It
supports the Lukasiewicz’s and Godel’s t-norm, t-conorm and fuzzy implication, as well as
the Kleene-Dienes implication.

As already implied by the examples presented in Section 2, fuzzy DLs can be straight-
forwardly used to manage the outcome of classifiers with respect to background domain
knowledge. Using the available constructors and corresponding inclusion and equality ax-
ioms, one can construct the terminological knowledge (TBox) that captures the semantics
of the examined application domain. The assertional knowledge (ABox) that includes the
fuzzy assertions corresponds to the analysis extracted descriptions. Typical DL inference
services can be used afterwards to check whether the extracted descriptions violate the logi-
cal model of the domain leading to an inconsistency, or to compute the concepts to which a
certain image instance belongs to.

However, in order to address the issues described in Section 2, namely the determination
of the more plausible scene level description, the subsequent removal of incoherent descrip-
tions and further enrichment of the overall interpretation, a reasoning framework coordinat-
ing the evoked DL inferences is needed. Towards this end, the handling of inconsistency
constitutes a central requirement. As illustrated in Section 2, such inconsistency may refer
to assertions at the same level of granularity, that is between scene level descriptions or
between object level description, or to assertions pertaining to different levels. Handling in-
consistencies in DLs knowledge bases usually refers to approaches targeting revision of the
terminological axioms [47,48]. In the examined problem however, the inconsistencies result
from the limitations in associating semantics with visual features. Thus it is the ABox that
needs to be appropriately managed. The adopted methodology is described in the following
section, where the proposed fuzzy DLs based reasoning framework is detailed.

3 http://www.image.ece.ntua.gr/~nsimou
“ http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
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Fig. 2 Architecture of the proposed fuzzy DLs based reasoning framework.

4 A Fuzzy DL-based Reasoning Framework for Enhancing Semantic Analysis

Figure 2 depicts the architecture of the proposed fuzzy DLs based reasoning framework.
The input consists of a set of scene and object level assertions representing the descriptions
extracted through the application of learning based analysis techniques. No assumptions
are made with respect to the particular implementation followed. The interpretation of the
initial assertions consists in their semantic integration into a consistent overall image inter-
pretation, and is realised in three steps. First, the more plausible scene level descriptions
are determined, by utilising the subsumption relations among the considered scene level
concepts. Next, the inconsistencies in the initial descriptions with respect to the previously
computed scene level interpretation are resolved, resulting in a ranked list of plausible inter-
pretations. The highest ranked interpretation is passed to the final step, where by means of
logical entailment, inferred assertions are made explicit.

Notably, the first two steps constitute a special case of knowledge integration, as only
assertions, but no axioms, are allowed to be removed. The reason for the latter, as also dis-
cussed in Section 5, lies in the fact that the axioms address domain-specific yet generic
knowledge, rather than conceptualisations customised to specific traits of the examined
dataset. As knowledge integration and inconsistency resolving for DLs ontologies have been
extensively treated in the literature [49, 50], the approach followed within the proposed rea-
soning framework, builds on the grounds of existing results by appropriately adjusting them
in order to meet the peculiarities introduced within the examined application context. In the
sequel, the details of the individual tasks are given.

4.1 Scene level interpretation

The possible logical associations between concepts referring to object level and concepts
referring to scene level induce that all assertions need to be taken into account in order to
infer the degrees of confidence pertaining to scene level descriptions. To accomplish this,
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Table 2 Scene level interpretation.

Scene level interpretation algorithm

Input: scene level concepts hierarchy Hgc, input assertions A (scene and object level)
Output: glb for the path of scene level concept hierarchy with highest confidence

1: populate scene concept hierarchy (compute inferred degrees)
2: for all hierarchy levels L; starting from the most specific
3. for all scene level concepts SC;; € L;

4: if (disjoint SCy SCyy ... ){

5: add assertion SC;; with d;; = max{dy, dj, ...} to scene interpretation list
6: move remaining SCj, k#j, assertions to inconsistent scene concept list
7:

8: if L; different than lower hierarchy level{

9: if SC,’j € L; is disjoint to SC(i*l)j [S)

10: move SC(;_1; and its subsumes to inconsistent scene concept list
11: if SC;; € L; subsumes SC(I-,I)] el

12: ifd,'j;d(i,l)j

13: d,'j = d(i—l)j

14: }

15: return scene interpretation list

all disjointness axioms are removed. Thereby, we allow for the exploitation of all interrela-
tions implicit in the initial descriptions. The next step consists in the bottom-up traversal of
the scene level concept hierarchy for the purpose of determining the more plausible scene
descriptions.

More specifically, at each level of the hierarchy, we check whether the concepts for
which (told or inferred) assertions exist are disjoint. In the presence of disjointness, the as-
sertion with the highest degree of confidence is preserved as more plausible, while the rest
are marked as inconsistent. Once the examination at a given level is completed, consistency
is examined between the set of currently selected assertions SA; and those computed at pre-
vious hierarchy level SA;_;. If an assertion a of SA;_; contradicts the assertions belonging
in SA;, then a is marked as inconsistent. The process is repeated until the root of the hierar-
chy is reached and results in discriminating the scene level concept assertions into two sets,
namely the set of scene descriptions comprising the more plausible interpretation, and the
set of scene descriptions marked as inconsistent. Table 2 summarises the described proce-
dure, where S denotes the list of scene level concepts and A the complete list of assertions
extracted by means of analysis.

The reason for prioritising scene level assertions over object level ones lies in the differ-
ent nature of the semantics involved. Scene level concepts, and to be more precise sub-trees
in the scene level concept hierarchy, comprise mutually excluding sub-domains. Contrari-
wise, multiple configurations of assertions at object level may comply with a specific sub-
domain. To illustrate this in a more intuitive manner, consider an image for which the ex-
tracted descriptions are: (im : contains.Sea) > 0.67, (im : Icontains.Sand) > 0.74 and (im :
Rockyside > 0.85), and assume a TBox consisting of the axioms Beach = (Jcontains.Sea)
(Jcontains.Sand) and Beach Rockyside T L. Both interpretations pertaining to the Rock-
yside sub-domain, i.e. { (im : Jcontains.Sea) > 0.67, (im : Rockyside > 0.85) }, and {
(im : Icontains.Sand) > 0.74), (im : Rockyside > 0.85) } rank higher than the one pertain-
ing to beach sub-domain, i.e. { (im : Icontains.Sea) > 0.67, (im : Icontains.Sand) > 0.74,
(im : Beach > 0.67) }, in terms of plausibility as captured in the corresponding degrees.
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Table 3 Inconsistency handling.

Inconsistency tracking and resolution algorithm

Input: scene interpretation list SL, input assertions A (scene and object level), domain TBox T
Output: ranked alternative interpretations

1: for all scene level concepts SC; € SL

2: ifC;MSGELeT

3: add C; E noSC; in T and C; to disjoint list

4: forall noSC; € T

5:  add noSC; C noConcept in T

6: forall C; for whichC; M SCG;C L €T

7:  remove told assertions

8: while (T,A) |= im : NoConcept {

9:  apply expansion rules (Table 4)

10: resolve inconsistencies arising from disjoint object concepts
11: resolve inconsistencies arising from disjoint scene concepts
12:

13: compute number of assertions removed and average their degrees
14: return ranked list of alternative consistent interpretations

4.2 Inconsistency handling

Having computed the most plausible scene level interpretation, the next step is to resolve the
possible inconsistencies. In the current implementation, the regions depicting an object level
concept are represented implicitly through statements of the form (im : Icontains.Concept;)
> n;, and thus inconsistency may arise either among scene level assertions or between scene
and object level assertions. The first step towards the identification of inconsistencies is to
restore the disjointness axioms that were removed during the scene interpretation task. In
order to avoid halting the reasoner, the disjointness axioms are rewritten with respect to the
scene level concepts selected at the previous step in the form of subsumption relations to
respective no-concepts. Practically, given a set of selected scene level concepts {S;, S, ..},
each axiom of the form C; M S; C L is translated into Cy C noS;. Furthermore, for all noS;
concepts we introduce an axiom of the form noS; C NoConcept. Consequently, resolving
the possible inconsistencies amounts to tracking the assertions that led to the inference of
NoConcept instances.

First, we address inconsistencies incurred directly by told descriptions. This translates
into checking whether there exist asserted individuals that refer to C; concepts participating
in the introduced C; C noS; axioms. The handling of such assertions is rather straightfor-
ward and results in their immediate removal. Clearly, addressing asserted individuals first,
prunes the search space during the subsequent tracking of the inferences that lead to an
inconsistency.

Next, we consider assertions referring to complex, object and scene level, concepts.
Again we start with object level concepts in order to account for cases of conflicts at scene
level that are triggered through inference upon object level assertions. Contrary to the pre-
vious case, we now need to analyse the involved axioms in order to track the asserted de-
scriptions that cause the inconsistency. Furthermore, these axioms determine which of the
descriptions should be removed so as to reach a consistent interpretation. To accomplish
this, we build on the grounds of relevant works presented for resolving unsatisfiable DL
ontologies [51] and employ a reversed tableaux expansion procedure. We note that the main
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M-rule if (a:C1NGy) € L(x)
then L(y)=L(x)\ {(a:C1)} and
L(z)=L(x)\{(a: C2)} and
Lw)=Lx)\{(a:Ci 1)}
L-rule if (a:C1UG) € L(x)
then L(x)=L(x)\{(a: C; UC2)}

whereC; — A |CMND|3RD

Table 4 Expansion rules for computing the alternative sets of consistent assertions.

difference with respect to the relevant literature is that in our application framework, we
consider solely the removal of assertions, rather than the removal or weakening of termino-
logical axioms. Table 3 summarises the procedure for handling inconsistencies while Table
4 summarises the expansion rules.

The expansion procedure starts having as root node the (im : NoConcept > d;} asser-
tion, where d; is the computed inferred degree, and continues until no expansion rule can be
applied. As illustrated, in the case of inconsistencies caused by axioms involving the con-
junction of concepts, there is more than one way to resolve the inconsistency and reach a
consistent interpretation. Specifically, there are many alternative interpretations as the num-
ber of all possible disjunctions of size k = 1,..,N, where N is the number of conjuncts.
In order to choose among them, we rank the set of solutions according to the number of
assertions that need to be removed and the average value of the respective degrees.

We note that since all role assertions referring to the role contains are assumed to hold
with a degree > 1.0, and the regions that depict object level concepts are not explicitly
represented, expansion rules are required only for the case of the M and U constructors.
Consequently, in the case of a domain TBox that utilises additional constructors or when
fuzzy role assertions are also considered, the expansion rules would have to be appropriately
extended.

4.3 Enrichment

The final step considers the enrichment of the descriptions by means of entailment and is
the most straightforward of the three tasks, as it amounts to typical fuzzy DLs reasoning.
Once the scene level concepts are selected, and the assertions ensuing inconsistencies either
directly or through complex definitions, are resolved, we end up with a semantically consis-
tent set of assertions, whose communication to the fuzzy DLs reasoning engine results in the
acquisition of the final semantic image description. To render the inferred descriptions ex-
plicit, corresponding queries are formulated and the responses constitute the final outcome
of the proposed framework.

Figure 3 displays an example application of the proposed reasoning framework. As illus-
trated, the applied concept detectors assess the image as both a Rockyside and Seaside scene.
The respective object level descriptions include the concepts Sky, Sea and Sand. Removing
the disjointness axioms from the TBox, we obtain the inferred assertions for the concepts
Beach, Landscape and Outdoor, where the inferred assertions are grouped with respect to
the asserted ones that triggered their inference. The left bottom part of Fig. 3 depicts the
scene level concept hierarchy that corresponds to the depicted domain TBox extract, as well
as the inferred degrees.
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Initial Assertions.
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Forest = 0.0

Countryside_bulidings = 0.0

Fig. 3 Example application of the proposed fuzzy DLs based reasoning framework.

Following the afore described procedure, we start from the lowest level of the hierarchy
and add the Beach concept assertion to the list of plausible scene descriptions. Moving to
the next level, there are assertions referring to the Rockyside and Seaside concepts. Since
the two concepts are disjoint, we select the assertion with the highest degree, namely the
one referring to the Rockyside concept, and add it to the list of plausible scene descriptions.
Checking against the previous level, it is the case that Rockyside and Beach are disjoint.
Thus, the Beach assertion is removed from the list of plausible descriptions and marked as
inconsistent. At the next step, the top level of the hierarchy is reached, which causes the
addition of the Outdoor concept assertion in the scene interpretation.

Hence, upon the completion of the scene level interpretation step, the scene level concept
hierarchy has been populated, and the sub-tree with the highest degrees is identified, which
in our example amounts to the concepts Rockyside and Outdoor. The inconsistency handling
step that follows results in removing the told descriptions referring to the Sand and Seaside
concepts, and thereby the Sea and Beach descriptions are also removed. For instance, in the
case of the Beach = Seaside I Jcontains.Sand axiom presented in the example of Figure
3, there are three alternatives to a consistent interpretation, obtained by removing either
the Seaside assertion, or the Jcontains.Sand assertion, or both. In the example of Figure
3, enrichment amounts to the addition of the (image:Outdoor)>0.86 assertion, and to the
update of the (image:d.contains.Rock) assertion degree to 0.78 from the initial value of
0.67.

5 Experimental Results and Evaluation

To evaluate the feasibility and potential of the proposed fuzzy DLs based reasoning frame-
work, we carried out an experimental implementation, using fuzzyDL as the core fuzzy DLs
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Countryside_buildings T Landscape
Jeontains.Buildings T Countryside_buildings
Countryside_buildings C Jcontains.Buildings
Grass L Tree C Vegetation

Rockyside T Mountainous

Rockyside T Jcontains.Rock

Forest C Jcontains.Tree

Jeontains. Vegetation T Landscape

Roadside C Jcontains.Road

Roadside C Landscape

Forest C Landscape

Jeontains.Sea = Seaside

Beach = Seaside M dcontains.Sand
Jeontains.Sky C Outdoor

Landscape C Outdoor

Trunk C Tree

Forest M (Roadside U Countryside_buildings) C L
Roadside M Countryside_buildings C L
Rockyside M Seaside C L

Forest M (Wave LI Sea LI Sand LI Road) C L
Rockyside M (Wave U Sea LI Sand L Boat) C L

Table 5 Example extract of the outdoor image domain TBox constructed for evaluation purposes.

Natural : outdoor images of natural scenes, including landscape,
: mountainous, and seaside ones

Landscape : roadside, rural buildings and forest scenes

Mountainous  :  mountain and rockyside scenes

Seaside : coastal and beach scenes

ManMade : outdoor images of manmade scenes

Cityscape : urban scenes

Table 6 Description of scene level concepts for the considered outdoor images dataset.

inference engine. The choice over the available reasoners has been has been the provided
expressivity which meets the representation requirements.

Opting for a generic performance assessment, we experimented in the domain of out-
door images, as it allows for wealthy semantics and it is sufficiently broad to avoid hard
to generalise observations featuring close domains such as medical imaging. Addressing
four categories of outdoor images, namely landscape, mountainous, seaside, and cityscape,
a TBox was constructed to capture relations among the involved scene and the object level
concepts. Table 6 provides the description of the related scene definitions, while Table 5
illustrates an extract of the developed background knowledge. The considered image dataset
consists of 700 images, of which two non overlapping sets of 350 images have been assem-
bled for training and testing purposes respectively. Ground truth has manually generated for
the complete dataset at scene and object level.

Utilising the developed TBox, performance is estimated by comparing the reliability
of the image descriptions extracted through machine learning to that of the descriptions
resulting after the application of the proposed reasoning framework. To this end, we adopted
the precision, recall, and F-measure metrics, using the following definitions.

— recall (r): the number of correct assertions extracted/inferred per concept divided by the
number of the given concept assertions present in the ground truth image descriptions.

— precision (p): the number of correct assertions extracted/inferred per concept divided by
the number of assertions that were extracted/inferred for the given concept.
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Mountainous Landscape Cityscape

Fig. 4 Experiment I - Example images of the concepts addressed by the learned scene level classifiers.

— F-measure: 2« pxr/(p+r).

To investigate the contribution with respect to the wealth of the semantic associations
pertaining to the concept classifiers involved, two experimental settings have been config-
ured. As described in the sequel, in the first experiment the employed concept classifiers are
rather poorly related, in terms of both scene and object level concepts; in the second ex-
periment, the employed classifiers address concepts whose interrelations go beyond simple
subsumption axioms, hence allowing for more complex inferences. Furthermore, we present
initial results with respect the use of fuzzy implication as the meas to model co-occurrence
information.

5.1 Experiment I

In the first experiment, the sets of scene Cgcene and object Cyp jecr level concepts addressed
by the classifiers consist in Cyeene={ Outdoor, Natural, ManMade, Landscape, Mountainous,
Beach} and C,j.,={Building, Grass, Vegetation, Rock, Tree, Sea, Sand, Conifers, Boat,
Road, Ground, Sky, Trunk, Person} respectively.

Figure 6 illustrates example images of the addressed scene level concepts. As described
in Table 6, the concept Natural encompasses images belonging to the Landscape, Beach
and Mountainous images, while the concept ManMade encompasses cityscape images. The
only additional concept supported by reasoning is the Seaside concept, which represents
coastal images that do not necessarily correspond to beach images. Statistical information
regarding the frequency distribution of each concept in the train and test datasets is given in
Tables 7 and 8. Since the employed object concept classifiers perform on segment level, the
distribution of object level concepts is given with respect to the overall number of segments.

Different implementations have been used for the employed classifiers, allowing for
overlapping descriptions. Specifically, for scene level classification, the SVM-based ap-
proach of [52] and the randomised clustering trees approach of [53] have been used. Simi-
larly, for segment level (object) classification, the distance based feature matching approach
based on prototypical values of [31], and the clustering trees approach of [53] have been
followed.

Tables 7 and 8 present the attained performance with respect to scene and object level
concepts, when applying solely the learned classifiers and when utilising the proposed rea-
soning framework.
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Table 7 Experiment I - Evaluation of analysis and reasoning performance for scene level concepts, and
concept distribution in the dataset.

Ground Truth (%) Analysis Reasoning
Concept Train Test Recall | Precision | F-M | Recall | Precision | F-M
Outdoor 100.00 100.00 0.99 0.99 0.99 0.99 0.99 0.99
Natural 91.51 93.70 0.97 0.96 0.97 0.98 0.96 0.97
ManMade 8.49 6.30 0.18 0.40 0.25 0.18 0.40 0.25
Cityscape 8.49 6.30 0.18 0.40 0.25 0.18 0.40 0.25
Landscape 55.12 55.84 0.75 0.63 0.68 0.76 0.68 0.71
Mountainous 18.15 11.88 0.64 0.28 0.39 0.48 0.30 0.37
Beach 10.26 8.52 0.89 0.26 0.40 0.90 0.31 0.47
Seaside 18.24 18.98 - - - 0.86 0.49 0.63

Table 8 Experiment I - Evaluation of analysis and reasoning performance for object level concepts, and
concept distribution in the dataset.

Ground Truth (%) Analysis Reasoning
Concept Train Test Recall | Precision | F-M | Recall | Precision | F-M
Building 4.12 4.39 0.35 0.17 0.22 0.09 0.83 0.17
Grass 6.73 9.85 1.54 0.40 0.10 0.01 0.94 0.05
Vegetation | 9.09 16.67 0.99 0.70 0.82 0.90 0.80 0.85
Rock 4.54 4.47 0.98 0.21 0.35 0.54 0.42 0.47
Tree 3.78 10.08 0.22 0.65 0.33 0.18 0.58 0.27
Sand 2.27 2.19 0.49 0.37 0.42 0.92 0.41 0.56
Sea 4.29 4.32 0.72 0.46 0.56 0.88 0.49 0.63
Conifers 1.01 0.90 1.00 0.01 0.02 0.50 0.02 0.03
Mountain 0.59 0.53 0.14 0.01 0.01 0.43 0.04 0.06
Boat 0.50 1.21 0.10 0.40 0.16 0.10 0.50 0.17
Road 4.04 4.32 0.15 0.50 0.23 0.02 0.25 0.03
Ground 27.27 4.39 0.06 0.57 0.19 0.11 0.57 0.19
Sky 19.02 18.04 0.93 0.87 0.89 0.93 0.87 0.89
Trunk 1.76 3.56 0.38 0.65 0.48 0.38 0.65 0.48
Person 8.67 11.97 0.49 0.54 0.52 0.49 0.54 0.52

As illustrated, in the case of scene level concepts, the utilisation of reasoning matches
the performance of the classifiers, while in some cases it introduces a slight improvement.
This behaviour is a direct result of the loose semantic relations among the employed scene
and object level classifiers. Going through the corresponding TBox (Table 5), ones notices
that the scene level concepts are in their majority atomic concepts, participating in subsump-
tion axioms with one another. Hence, additional inferences can issue only from relations in-
volving object level concepts. For the considered set of concept classifiers though, the only
type of association between scene level concepts and object level concepts is disjointness.
As a result, object level assertions cannot have an effect on the plausibility of scene level
assertions.

To acquire a quantified measure over the effect of reasoning in such a case, we inter-
preted the response of the scene classifiers according to the respective scene concept se-
mantics. For example, if an image was classified as Landscape, it was interpreted as well as
positive classification for the concepts Natural and Outdoor. Thus, as long as a correct clas-
sification is attained at some level of the scene concept hierarchy, it is propagated towards
the more generic concepts. Consequently, following this scheme, allows us to observe how
the application of reasoning compares to this “optimal” scene classification interpretation,
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(image : Countryside_buildings) > 0.58
(image : Rockyside) > 0.45
(image : Roadside) > 0.59

(image : Forest) > 0.61
(image : Seaside) > 0.65
(image : Icontains.Vegetation) > 0.72
(image : Icontains.Vegetation) > 0.62
(image : Icontains.Sky) > 0.91
(image : contains.Person) > 0.68

Fig. 5 Example image and corresponding extracted descriptions where additional knowledge is needed to
perform inference.

which includes subsumption relations. We note though that this optimistic perspective taken
with respect to the acquired scene classifications, does not reflect the actual behaviour of
the classifiers, nor the general case, as it is not uncommon to acquire positive classification
results for semantically disjoint concepts or to get negative responses for concepts that are
subsumed by concepts for which the classification was positive.

Examining the performance with respect to the object level concepts, the effect induced
through reasoning is more interesting. As illustrated in Table 8, four patterns can be ob-
served: i) cases where only the precision is improved, ii) cases where only the recall is
improved, iii) cases where both precision and recall improve, and iv) cases where the per-
formance remains invariable to the application of reasoning. As explained in the following,
each pattern derives from the type of axioms in which the respective concept participates.

Improvement on precision, such in the case of the Boat concept, relates strongly to the
utilisation of disjointness, as through the presented inconsistency handling approach, it is
ensured that the final assertions comply with the scene level interpretation. Naturally, this
harbours the risk of ending up with significantly distorted final descriptions in the case of
falsely scene level interpretation. Such an example constitutes the performance deterioration
observed with respect to the concept Road, in which case the majority of images depicting
road were attributed with greater confidence to the Seaside or . However, when considering
such cases one needs to bear in mind not the interpretation desired based on visual inspection
of the examined image, but rather the interpretation appearing more plausible on the grounds
of the initial descriptions provided by the classifiers.

Figure 5 illustrates such an example. The two most plausible scene level descriptions
are misleading, while the detected object level concepts, though accurate, are not adequate
to drive the inference of corresponding scene concept. Additional knowledge, such as co-
occurrence of concepts could be exploited to assist and either re-adjust the degrees or trigger
an inference. This limitation constitutes one of the reasons motivating as future direction the
exploration of reasoning framework that combines fuzzy and probabilistic knowledge. Some
very preliminary investigations towards this directions are described in the following, where
the modelling of co-occurrence information in the form of fuzzy implication is discussed.

Object level concepts exhibiting improved recall rates, such as Building, Sand and Grass,
correspond to concepts that appear on the righthand side of axioms. In practise such con-
cepts may be entailed either by scene level concepts, such is the case for the Building and
Sand concepts, or by other object level concepts, such in the case of the concept Tree. Re-
spectively, concepts whose recall is reduced reflect cases of wrongly inferred scene level
concepts that resulted in their removal due to disjoint axioms.
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Table 9 Overall evaluation for Experiment 1.

Analysis Reasoning
Concept Recall | Precision | F-M | Recall | Precision | F-M
All concepts 0.68 0.49 0.57 0.68 0.63 0.65
Concepts partici- 0.70 0.49 0.58 0.70 0.64 0.67
pating in axioms

%

Roadside Countryside Forest
buildings

Seaside Rockyside
Fig. 6 Experiment II - Example images of the concepts addressed by the learned scene level classifiers.

Cases where both precision and recall are improved correspond to concepts appearing
on the righthand side of general inclusion axioms, when the correct scene level concepts
have been inferred. Such concepts are characterised by rich semantics and apparently benefit
the most from the application of reasoning. Contrariwise, invariable performance indicates
atomic concepts participating solely on the left hand side of axioms (e.g. the Trunk and Boat
concepts).

Table 9 summarises the average performance of the classifiers and of the proposed rea-
soning framework for the experiment. The first line presents the performance when all con-
cepts are taken into account, while the second line presents the respective performance when
only concepts that participate in axioms are considered. As illustrated, the application of
reasoning bears a positive impact in terms of the precision, which is increased from 0.49 to
0.63. Recall remains unchanged for the reasons explained above.

5.2 Experiment II

In the second experiment, the sets of scene Cycene and object Coy e level concepts addressed
by the learned classifiers are respectively Cgcene={Countryside_Buildings, Roadside, Rock-
yside, Seaside, Forest} and C,pje.,={Building, Roof, Grass, Vegetation, Dried-Plant, Sky,
Rock, Tree, Sea, Sand, Boat, Road, Ground, Person, Trunk, Wave}. The additional concepts
supported by reasoning are Landscape, Mountainous, Beach, and Outdoor. Landscape is
subsumed by Forest, Roadside and Countryside_buildings, while Mountainous is subsumed
by Rockyside. Statistical information regarding the frequency distribution of each concept
in the train and test datasets is given in Tables 10 and 11. This time, a single classifier has
been employed per concept, following the SVM based approach of [20].

Table 10 compares the performance of the classifiers and of the proposed reasoning
framework with respect to scene level concepts. Contrariwise to the previous experiment,
only explicitly generated classification are considered. As illustrated, apart from the ex-
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Table 10 Experiment II - Evaluation of analysis and reasoning performance for scene level concepts, and
concept distribution in the dataset.

Ground Truth (%) Analysis Reasoning
Concept Train Test Recall | Precision | F-M | Recall | Precision | F-M
Countryside_buildings 16.42 16.05 0.30 1.0 0.46 0.60 0.86 0.71
Rockyside 17.15 17.88 0.68 0.70 0.69 0.68 0.79 0.74
Roadside 18.97 19.34 0.68 0.69 0.69 0.68 0.72 0.70
Forest 19.73 20.45 0.75 0.63 0.69 0.74 0.68 0.71
Seaside 18.24 18.98 0.85 0.67 0.75 0.86 0.72 0.78
Beach 10.26 8.52 - - - 0.45 0.76 0.57
Landscape 55.12 55.84 - - - 0.97 1.00 0.98
Mountainous 18.15 18.88 - - - 0.67 0.80 0.74
Outdoor 100.00 100.00 - - - 0.99 1.00 0.99

pected improvement in terms of scene level concepts that are acquired due to subsumption
relations, the application of reasoning incurs a more noticeable effect compared to the first
experiment. The reasons for this behaviour lie again in the semantics of the concepts in-
volved. Specifically, in this experimental setting, the object level concepts addressed by
the classifiers are semantically related with scene level ones not only through disjointness
axioms but also by general concept inclusions, thus incurring the inference of scene level
concepts from object level ones. For example, the presence of a Building assertion triggers
the inference of a corresponding Countryside_buildings assertion, with an equal or greater
degree of confidence. Hence, in combination with the axioms that relate the concepts Vege-
tation and Grass with Landscape scenes, the application of reasoning allows to improve the
recall for Countryside_buildings.

Table 11 compares the performance for descriptions at object level. With the exception
of the Boat and Grass concepts, the application of reasoning improves significantly on the
performance obtained by the sole application of the classifiers. Again, this is a direct con-
sequence of the fact that the considered object level concepts are characterised by richer
semantics with respect to the scene level concepts that constitute their context of appear-
ance. The deterioration in the recall rates of the Boat and Grass concepts, is again indicative
of the risks entailed by a false scene level interpretation. Going through the images for which
Boat assertions where falsely removed, we observed that the prevailing scene level classi-
fications were not in compliance with the depicted scene. Similar observations hold for the
concept Grass. A possible way to alleviate such phenomena, apart from the investigation
of additional types of knowledge, could be the re-assessment of the terminological axioms
describing the domain. However, such approach lurks the risk of ending up with solutions
customisable to a specific learning implementations or to specific application domains and
datasets.

Similar considerations emerge when examining the not so noticeable effect of reasoning
in the recall of scene level concepts such as the Rockyside one. Going through the images
depicting rocky side scenes, yet failed to recognised as such, we observed that in all cases
the classifiers had falsely detected another scene level concept instead; and this, despite the
fact that the instantiations of the Rock concept were successfully detected for their major-
ity. Adding the axiom Jcontains.Rock C Rockyside, would seem a reasonable approach to
improve recall for the Rockyside concept, especially since in the examined dataset, the Sea-
side classifier tends to produce higher confidence values than the Rockyside one for seaside
images, where rock instance appear too. However, it is easy to see that such an amendment
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Table 11 Experiment II - Evaluation of analysis and reasoning performance for object level concepts, and
concept distribution in the dataset.

Ground Truth (%) Analysis Reasoning
Concept Train Test Recall | Precision | F-M | Recall | Precision | F-M
Building 4.12 4.39 0.54 0.69 0.60 0.62 0.86 0.72
Roof 1.54 1.89 0.33 0.54 0.41 0.33 0.75 0.46
Grass 6.73 9.85 0.49 0.42 0.45 0.30 0.52 0.38
Vegetation 9.09 16.67 0.48 0.84 0.61 0.86 0.86 0.86
Dried-Plant | 0.01 0.04 0.07 0.11 0.08 0.07 0.13 0.10
Rock 4.54 4.47 0.65 0.45 0.53 0.69 0.70 0.69
Tree 3.78 10.08 0.49 0.52 0.51 0.56 0.47 0.51
Sand 2.27 2.19 0.02 0.10 0.03 0.57 0.45 0.50
Sea 4.29 4.32 69 0.60 0.64 0.85 0.69 0.76
Boat 0.50 1.21 0.41 0.71 0.52 0.33 0.66 0.44
Road 4.04 4.32 0.50 0.69 0.58 0.69 0.71 0.70
Sky 19.02 18.04 0.95 0.93 0.94 0.95 0.93 0.94
Ground 27.27 4.39 0.26 0.33 0.29 0.26 0.33 0.29
Person 8.67 11.97 0.75 0.51 0.61 0.75 0.51 0.61
Trunk 1.76 3.56 0.26 0.28 0.27 0.26 0.28 0.27
Wave 0.75 1.14 0.0.25 0.5 0.33 0.25 0.5 0.33

Table 12 Collective evaluation for Experiment II.

Analysis Reasoning
Concept Recall | Precision | F-M | Recall | Precision | F-M
All concepts 0.37 0.65 0.47 0.77 0.81 0.79
Concepts partici- 0.29 0.61 0.39 0.79 0.82 0.81
pating in axioms

would imbalance the trade off between what constitutes domain semantics and what is mere
tuning to the peculiarities of a given dataset.

Finally, Table 12 summarises the average performance. As illustrated, the application of
reasoning has a stronger influence compared to the first experiment, reflected on both recall
and precision, which are significantly improved.

5.3 Investigating Reasoning with Additional Knowledge

The previously described experimentation configurations allowed to assess the performance
of the proposed reasoning framework, and provided useful experiences with respect to the
issues and challenges involved. The observations drawn could be summarised in the two
following. On one hand, the proposed reasoning framework has the potential to enhance
semantic image analysis towards more consistent and complete descriptions, provided that
the concepts involved bear an adequate wealth of semantic associations. On the other hand,
the inference of the overall description is liable to false interpretations in the presence of
heavily distorted classification results, both in terms of the concepts and of their computed
degrees. As already mentioned above, a possible way to assist inference in such cases would
be the use of additional knowledge. Such knowledge could consider for example the per-
centage of an image assigned to a given description. Thereby, in cases like that of Figure
5, where normally no scene level concepts can be inferred based on the initial assertions, a
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complementary mechanism could favour the Landscape concept and its subclasses. Another
approach would be be the joint utilisation of probabilistic knowledge, regarding the concept
co-occurrence patterns.

Since our focus is currently on the benefits and weaknesses pertaining to the utilisation
of fuzzy reasoning, we performed some additional experiments using fuzzy implication to
capture co-occurrence information. We note though, that due to the early stage of this effort,
no conclusive observations can be drawn. In the following, we briefly describe the semantics
of fuzzy implication and present the outcomes of this preliminary investigation.

Fuzzy implication is defined by a function of the form J: [0, 1] x [0,1] — [0, 1] [42]. In
practise this means that the degree of the right hand side expression does not depend only on
the degree of the left hand side expression, but is influenced as well by the degree attributed
to the implication itself. Thereby, fuzzy implication can serve as means to introduce dataset
specific knowledge without impairing the impact of the inferences drawn by the crisp axioms
modelling generic semantics.

To get an initial estimation of whether such an approach could be beneficial, we experi-
mented using the following scheme. First, we performed statistical analysis on the manually
constructed ground truth to obtain co-occurrence patterns between scene level concepts and
object level concepts. The latter share a significant characteristic: although semantically re-
lated to specific scene level concepts, they do not necessarily entail information regarding
the presence of the respective scene level concepts. Then, the observed concept patterns
frequency was used in order to define the degrees of the corresponding fuzzy implication
axioms.

Two different schemes have been used for the calculation of the fuzzy implications de-
grees. In the first case, concepts co-occurrence was measured with respect to the ground
truth annotations; thus it reflects in a way an ideal modeling of the dataset specific knowl-
edge. In the second case, co-occurrence was measured taking into account the object level
descriptions as obtained by the classifiers and the scene level ground truth annotations. Con-
sequently, in the second case the degrees encompass additional information accounting to
an extent for the effectiveness of the classifiers, and thus for the errors introduced by them.
Table 13 illustrates the effect on the determination of image descriptions at scene level, us-
ing the Kleene-Dienes implication [42], with respect to the two aforementioned schemes for
determining concept co-occurrence.

Although both schemes used for the determination of degrees are very simplistic, the
introduction of fuzzy implication appears to have the potential to incur a further improve-
ment when compared with the respective values in Table 10. As previously mentioned, these
results are only preliminary, and such do not allow for any conclusions to be drawn yet. Fur-
ther investigation is required with respect to the methodology used to calculate the degrees
and the process of selecting which implications to consider. The associations between the
concepts aggravate further the difficulty in finding a balance between compensating for clas-
sification errors (by opting for higher implication degrees) and avoiding figurative increase
in recall values (i.e. improved recall accompanied by significant deterioration in precision).

6 Conclusions and Future Directions

In this paper, we presented a fuzzy DLs-based reasoning framework for the purpose of en-
hancing the extraction of image semantics through the utilisation of formal knowledge. The
deployment of fuzzy DLs allows to formally handle the vagueness encountered in classifica-
tions acquired through statistical learning, while the formal semantics allow the integration



22

Table 13 Evaluation for scene level concepts when using fuzzy implication to model co-occurrence informa-
tion. The fuzzy implication degrees are acquired from ground truth data and from the classifications respec-
tively.

Ground Truth Co-Occurrence | Classification Co-Occurrence
Concept Recall | Precision F-M Recall | Precision F-M
Countryside_buildings 0.72 0.86 0.78 0.84 0.87 0.85
Rockyside 0.74 0.69 0.71 0.73 0.80 0.76
Roadside 0.68 0.68 0.68 0.69 0.76 0.75
Forest 0.66 0.75 0.70 0.73 0.73 0.73
Seaside 0.79 0.80 0.79 0.86 0.85 0.85

of the initial description into a semantically coherent interpretation. The proposed reasoning
framework exploits reasoning not only in order to enrich the image descriptions by means of
entailment, but also in order to address and resolve inconsistencies in the initial classifica-
tions. Thereby, and free of assumptions regarding the individual classifiers’ implementation,
it provides the means to reach a consistent final image description and to alleviate limita-
tions often encountered in learning based approaches due to poor semantics utilisation. The
experiments, though not conclusive, show promising results, while outlining a number of
issues and challenges affecting the attained performance.

Future directions include the extension of the framework in order to handle the represen-
tation of individual image regions and spatial relations so as to allow the utilisation of spatial
reasoning. Furthermore, as delineated in the conducted evaluation, experimentation towards
the possibilities of introducing additional knowledge, either in the form of fuzzy implication
or in a probabilistic manner, constitutes another direction towards a more complete frame-
work. The latter is of particular interest, not only because both types of imprecision are met
in semantic image analysis, but mostly because they serve complementary purposes.
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