
HOW MANY MORE IMAGES DO WE NEED?
PERFORMANCE PREDICTION OF BOOTSTRAPPING FOR IMAGE CLASSIFICATION

Elisavet Chatzilari?† Spiros Nikolopoulos? Yiannis Kompatsiaris? Josef Kittler†

?Centre for Research & Technology Hellas - Information Technologies Institute
†Centre for Vision, Speech and Signal Processing, University of Surrey Guildford, UK

ABSTRACT

Motivated by the recently introduced scalable concept de-
tection challenge that requires classifiers for hundreds or even
thousands of concepts, the objective of this work is to predict
the cases where the enhancement of an initial classifier with
additional training images is not expected to provide signif-
icant improvements. To facilitate this objective, we need a
model for predicting the performance gain of a bootstrapping
process prior to actually applying it. In order to train this
model, we propose two features; the initial classifier’s matu-
rity (i.e. how close is the current hyperplane to the optimal)
and the oracle’s reliability (i.e. how reliable is the oracle in
providing the correct labels of new training data). Thus, the
contribution of our work is on proposing a method that is able
to exploit the correlation between the expected performance
boost and these two indicators. As a result, we can consider-
ably improve the scalability properties of such bootstrapping
processes by concentrating on the most prominent models and
thus reducing the overall processing load.

Index Terms— scalable concept detection, image classi-
fication, performance prediction, bootstrapping

1. INTRODUCTION

An important factor that affects the quality of supervised clas-
sifiers is the size of the training set. Aiming to improve the
performance of the classifiers, the bootstrapping technique
was designed to augment the training set with additional train-
ing samples [1, 2]. In a similar endeavour, active learning
was later proposed aspiring to minimize the annotation cost
by enhancing the initial training set with the most informative
samples [3]. Relying on the basic principles of active learn-
ing but aiming to introduce also the oracle’s confidence as an
important factor, the most recent works in this field propose
to enhance the training set with the most misclassified neg-
atives [4], or with the most prominent positive examples by
jointly considering the oracle’s confidence and the sample’s
informativeness when selecting new samples [5].

An interesting aspect of most bootstrapping approaches
evaluated so far, is that they have been tested using very few
examples to train the initial model, many of which even start

with just two [6, 7, 8]. However, with the widespread adop-
tion of crowdsourcing, collecting medium scale datasets with
ground truth annotations has become a realistic scenario for a
rather high number of concepts. This is particularly important
in the context of automatic concept detection, given that the
annotations obtained via crowdsourcing has proven to be of
comparable quality to the annotations of experts [9]. Promi-
nent examples of such datasets are the 25000 images used
for the 2012 imageCLEF photo annotation task [10], which
were annotated for 94 concepts by using Amazon’s Mechan-
ical Turk (MTurk) service, as well as the 14 million images
provided by ImageNET [11], which is currently the largest
annotated image database consisting of 21841 concepts.

Considering the scale of such datasets, it is natural to won-
der whether bootstrapping techniques could still benefit the
cases where the initial training set consists of a few hundreds
instances rather than just a couple. More specifically, it be-
comes particularly important to examine the learning capac-
ity of the initial model with the aim to identify its saturation
point, i.e. a point where continuing adding more samples does
not really cause the model to perform better. It may be the
case that for certain types of concepts the saturation point can
already be reached using the few hundred examples included
in the initial training set. In this case, the model can be con-
sidered to have reached a level of maturity that adding more
training samples would only result in marginal performance
changes. In our work, we define the model maturity to be the
distance of the current model from the optimal hyperplane.
However, since this distance can not be directly calculated,
we approximate its value using the classification performance
of the model applied on a large set of images with ground
truth annotations.

In addition to the model’s maturity, another critical aspect
that is expected to determine whether adding more samples
will cause the model’s performance to improve is the oracle’s
reliability, which depends on how accurately the oracle can
label new training data (i.e. how accurately they have been
annotated through active (e.g. MTurk), or passive (e.g. flickr
tags) crowdsourcing). This is due to the fact that adding a set
of examples, the majority of which has been falsely labelled
by an unreliable oracle, will most probably cause the model
to deteriorate. The oracle’s reliability can be considered as



an indicator of how much we trust the oracle’s decisions and,
among others, depends on the nature of the examined concept.
Indeed, there are some inherently ambiguous concepts that
are not easy to distinguish using words (e.g. palm-hand and
palm-tree) and there are others that can be pretty clearly de-
scribed by linguistics (e.g. snow). Thus, motivated by the ex-
pectation that the oracle will be more accurate when labelling
simpler rather than more ambiguous concepts, we formulate
the oracle’s reliability as a function of the concept of interest.
More specifically, reliability is approximated by the success
rate of the oracle in labelling a set of samples with ground
truth annotations, which is calculated using the average pre-
cision metric.

Based on the above, we propose the utilization of these
two features, i.e. the model’s maturity and the oracle’s re-
liability, for predicting the performance gain expected by en-
hancing the models. Then, based on these predictions, we can
select to enhance only the most prominent models, avoiding
in this way the computational cost that would be required to
enhance the full set of models (Fig. 1). This is particularly
useful in the context of recent trends in the image classifica-
tion domain, where the scalability of methods to numerous
concepts is now considered an important element of the pro-
posed solutions. For example, in the ImageCLEF competi-
tion [12], the organizers introduced this scalability require-
ment by adding the concept as an input to the participants’
systems rather than giving a pre-defined vocabulary of con-
cepts, while in the ImagneNet competition they had to clas-
sify images with respect to a vocabulary of 1000 concepts.

There are only a few works in the literature dealing with
the prediction of the expected learning performance. The au-
thors of [13] investigate both theoretically and empirically
when effective learning is possible from ambiguously labelled
images. They formulate the learning problem as partially-
supervised multi-class classification and provide intuitive as-
sumptions under which they expect learning to succeed. On
the other hand, we formally formulate the expected perfor-
mance gain as a function of two pre-computed features and
estimate this function using a regression model. More closely
related to our approach is the work presented in [14], where
the objective is to predict the performance difference between
automatically created and manually annotated datasets. On
the contrary, our approach is designed for the bootstrapping
technique and its scope is to reduce both the annotation effort
and the computational complexity, by intelligently selecting
the most prominent concepts for which bootstrapping is ex-
pected to be beneficial.

2. SELECTIVE MODEL RETRAINING

As already mentioned, the purpose of our work is to examine
the correlation of the expected performance gain with the ma-
turity of the model and the reliability of the oracle, in order to
build a classifier trained on these two aspects. However be-
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Fig. 1. System Overview

fore expressing the performance boost of the initial classifier
as a function of the oracle’s reliability and the classifier’s ma-
turity, we should first define the approach followed for mea-
suring these quantities.

2.1. Oracle reliability

The reliability of the oracle R is defined on a per concept
basis and indicates the quality of the oracle. A less reliable
oracle will tend to make more mistakes feeding the classifiers
with wrongly selected images and misleading them from their
optimal target. In order to model this property, we quantify
the oracle reliability to be the performance of the oracle as
it is measured by average precision. More specifically, the
oracle is asked to rank the images of a manually annotated
dataset for the examined concept and the average precision is
calculated based on this ranking.

2.2. Model maturity

A more mature classifier, i.e. closer to the optimal model,
is expected to exhibit small fluctuations in terms of perfor-
mance, even if it is guided accurately, since it is closer to
its saturation point. On the other hand, an immature model
has more potential in increasing its performance although it
would need more accurate guidance as it is expected to be
highly susceptible to false positives. In this case, the maturity
of the model M is essentially the quality of the initial clas-
sifier, which can be measured by its performance tested on
a manually annotated dataset and quantified by the average
precision metric.

2.3. Regression model

Based on the assumption that the performance gain g is cor-
related both with the maturity M of the initial classifier and
the reliability R of the oracle, we propose to train a regression
model using these two features (i.e. M and R):

g = f(M,R) (1)

In the training phase, we provide pairs {g(i), (M(i), R(i))}
for every concept ci and the objective is to map the features
(M,R) to the performance gain g by estimating the mapping



function f . The two proposed features, reliability and matu-
rity are computed for every concept as explained in Sections
2.1 and 2.2 respectively, by applying three fold cross valida-
tion on a manually annotated training set. In order to com-
pute the output values g(i), the initial classifiers are trained
on the manually annotated training set. Additional training
samples are selected by a pool of candidates using the boot-
strapping technique and the enhanced models are trained us-
ing the initial training set augmented with the additional train-
ing samples. Afterwards, both the initial and the enhanced
classifiers are applied on a manually annotated evaluation set
and their performance, APinit(i) and APfin(i) respectively,
is estimated by the average precision metric. Finally, the per-
formance gain is calculated to be the performance difference
between the enhanced and the initial classifiers:

g(i) = APfin(i)−APinit(i) (2)
In the testing phase, given a new unseen concept cj and

an initial classifier recognizing this concept, we compute as
previously the proposed features {M(j), R(j)}, while the ex-
pected prediction gain ĝ(j) is computed by applying the map-
ping function f . Based on the predicted gain, we can choose
whether it is worthwhile to further enhance the classifier for
the specific concept or retain the initial classifier.

3. EXPERIMENTS

3.1. Datasets and implementation details

Two datasets were employed for the purpose of our experi-
ments. The imageCLEF dataset IC [10], annotated for 94
concepts, was used as the manually annotated dataset and was
split in three parts; T1, T2 and Test, consisting of 5k, 10k
and 10k images respectively. The MIRFLICKR-1M dataset S
[15] constitutes the pool of user-tagged images out of which
500 images are selected for each concept to act as the positive
examples enhancing the initial training set during the boot-
strapping approach. The bootstrapping technique which was
presented in [5] was employed in our experiments. The code
and the data for the following experiments are available at 1, 2.

3.2. Impact of maturity and oracle reliability

In this experiment we investigate empirically how the classi-
fier maturity and the oracle reliability correlate with the per-
formance gain by artificially simulating different levels of re-
liability for the oracle and examining the susceptibility of
classifiers with various levels of maturity to noisy examples
(i.e. false positive). For this experiment the IC dataset is
used. Initially, the classifiers are trained using the 5k images
of the T1 set. Afterwards, in order to simulate an unreliable
oracle, the initial training set is augmented with a combina-
tion of true and false positive images from the T2 set. The
final classifiers are retrained using the augmented dataset and

1http://mklab.iti.gr/project/PerformancePrediction
2https://github.com/ehatzi/PerformancePrediction
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Fig. 2. The effect of the oracle reliability and the classifiers’
maturity to the performance gain

are evaluated on the Test set. We consider five augmented
datasets, each one constructed by an oracle that adds samples
with 100%, 80%, 67%, 50% and 0% accuracy, simulating this
way different levels of the oracle’s reliability.

In Figure 2, we plot the performance gain between the
enhanced and initial classifiers with respect to the maturity
of the initial classifier. Initially, for each concept ci of IC
the maturity M(i) is calculated. Then the examined oracle
proposes new training samples, the enhanced classifiers are
trained and the performance gain g(i) is calculated. Finally,
for every level of reliability we have a set of 94 points de-
scribed by (M(i), g(i)) pairs. For better visualization, we
applied a smoothing filter on the data points and produced
an interpolated line for each oracle. The expected correla-
tion becomes obvious if we make the following observations;
(a) as the percentage of noisy data included in the augmen-
tation dataset increases, the classifiers’ performance deterio-
rates (higher decrease in performance for the magenta line,
i.e. adding 100% false positive examples, than the black line,
i.e. adding 50% true and 50% false positive examples), and
(b) the classifiers that exhibit a high level of maturity, are
not affected by the addition of the augmentation sets, nei-
ther positively when the oracle is perfectly reliable (i.e. red
line) nor negatively when adding only false positive exam-
ples (i.e. magenta line). More specifically, there are only
small fluctuations of the performance gain when the maturity
of the classifier is high (e.g. over 50%). All the above verify
our expectation that the performance gain is correlated with
both the maturity of the classifier and reliability of the oracle.
This justifies the selection of these two features to train the
proposed regression model for predicting the expected per-
formance gain.

3.3. Performance gain prediction

Our goal in this section is to verify whether the proposed re-
gression model can effectively predict the performance gain
of bootstrapping. For this purpose we learn the parameters
of function f as specified in Section 2 using Support Vector
Regression. The initial classifiers are trained using the com-



bination of T1 and T2 datasets and afterwards, classifiers are
enhanced by the images of the S dataset using the approach
presented in [5]. The different concepts (i.e the 94 concepts of
IC) constitute the instances for training the regression model.
In order to predict the expected gain ĝ(i) for an instance i, the
leave one out protocol is used (i.e. the regression model is
trained on the 93 concepts and it is used to predict the ex-
pected gain ĝ(i) of the remaining concept i). The leave-one-
out estimate is selected to ensure that the proposed approach
can generalize to different concepts than the ones used to train
the regression model f . In order to fit the parameters of the
function f , we tested two different modelling approaches, an
e-SVR and a nu-SVR regression model, while both linear and
RBF kernels were considered. The best performing approach,
the e-SVR regression model with an RBF kernel, was chosen
using cross validation.

In order to visualize the results, the concepts are ranked
based on the predicted gain ĝ, which is computed by applying
the regression function f . Then, the cumulative actual gain
g is calculated for every concept in the following way. If we
denote as c′1, c

′
2, ..., c

′
N the sorted concepts so that ĝ(c′k) >

ĝ(c′k+1), we define the cumulative gain function Cg(k) as:

Cg(k) =

k∑
i=1

g(c′i) (3)

This function indicates the total actual gain of the bootstrap-
ping algorithm if the classifiers representing the top k con-
cepts are enhanced, while the initial classifiers are maintained
for the rest N − k cases. In the optimal scenario, the pre-
dicted k concepts yield the highest improvement in the boot-
strapping process (i.e. g(c′1) > g(c′2) > · · · > g(c′k)). In
Fig. 3, the function of Eq. 3 is plotted for every k. The pro-
posed approach is compared to three baselines; (a) Random:
The instances are ranked randomly, (b) Upper Baseline: The
instances are ranked based on the actual gain g(i) simulating
the best possible regression model (i.e. best case scenario).
(c) Lower Baseline: The instances are inversely ranked based
on the actual gain g(i) simulating the worst regression model
(i.e. worst case scenario). It is obvious that the proposed re-
gression model significantly outperforms the random baseline
and lies quite close to the upper baseline.

In order to provide an indication of the benefits that could
be gained in terms of processing load by the employment of
the proposed approach, we provide Table 1. In this table, we
can see the achieved performance gain if we decide to en-
hance the top 10, 20, 40, 60, 80 and 94 (all) concepts as they
were ranked by the proposed approach and the random base-
line. The first column (Abs.) refers to the absolute perfor-
mance gain achieved, while the second column (Perc.) is the
percentage of this value with respect to the maximum pos-
sible achieved gain, which occurs if we enhance all the 94
concepts. We can see that using the proposed approach we
can achieve the same performance gain with significantly less
processing load. For example, if we decide to enhance the 40
most prominent concepts as ranked by the proposed approach,

Table 1. Prediction performance comparison between the
proposed approach and the random baseline

# concepts Proposed Random
Abs. Perc. Abs. Perc.

10 0,93 31,39 0,26 8,71
20 1,36 45,58 0,62 21
40 1,81 60,87 1,21 40,71
60 2,19 73,47 1,71 57,38
80 2,7 90,81 2,35 79,04
94 (All) 2.98 100 2.98 100
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we can achieve more than half of the total performance boost,
while we need to enhance around 60 concepts to achieve sim-
ilar boost if the random model decides for the ranking.

4. CONCLUSIONS

In this paper, in an effort to improve the scalability proper-
ties of the computationally expensive approaches that follow
the bootstrapping paradigm, we investigate the correlation of
two new features, i.e. the model’s maturity and the oracle’s
reliability, with the expected performance gain. This corre-
lation can be exploited to devise mechanisms appropriate for
ruling out the cases that are not expected to substantially ben-
efit from augmenting the training set. For example, when a
new concept is examined (i.e., which was not included in the
training instances/concepts), the regression function f is ap-
plied and the expected performance gain of adding new im-
ages is estimated. Having this knowledge, one can decide
if it is considered worthwhile adding more training data to
achieve the predicted performance improvement (e.g. for cer-
tain concepts even a small improvement might be considered
important). Our experiments have shown that by utilizing this
regression function f we can achieve approximately 60% of
the performance gain by enhancing less than half of the con-
cepts. Our plans for future work include the investigation of
additional features for predicting the expected performance
gain.
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