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Abstract. Statistical learning approaches, bounded mainly to knowl-
edge related to perceptual manifestations of semantics, fall short to ad-
equately utilise the meaning and logical connotations pertaining to the
extracted image semantics. Instigated by the Semantic Web, ontologies
have appealed to a significant share of synergistic approaches towards the
combined use of statistical learning and explicit semantics. While the rel-
evant literature tends to disregard the uncertainty involved, and treats
the extracted image descriptions as coherent, two valued propositions,
this paper explores reasoning under uncertainty towards a more accu-
rate and pragmatic handling of the underlying semantics. Using fuzzy
DLs, the proposed reasoning framework captures the vagueness of the
extracted image descriptions and accomplishes their semantic interpre-
tation, while resolving inconsistencies rising from contradictory descrip-
tions. To evaluate the proposed reasoning framework, an experimental
implementation using the fuzzyDL Description Logic reasoner has been
carried out. Experiments in the domain of outdoor images illustrate the
added value, while outlining challenges to be further addressed.

1 Introduction

Semantic image analysis has challenged researchers for decades in the quest for
generalisable approaches to alleviate the so called semantic gap [1–4], i.e. the lack
of correspondence between the descriptions that can be automatically extracted
from visual content and the respective meaning a human would attach. Towards
this goal, statistical learning approaches have attracted increased interest in the
last couples of years, as they provide powerful and effective means to discover,
capture, and manage, complex associations between perceptual features (i.e.
attributes of visual manifestations such as colour and texture) and semantic
concepts. Support Vector Machines (SVMs) [5] and Bayesian Networks (BNs)
[6] constitute popular examples, and have been espoused in numerous approaches
targeting the extraction of image semantics [7–12].

Although promising results have been reported, the attained performance
varies significantly with respect to the number of concepts addressed and the



considered image data sets as well. The observed variability relates to core chal-
lenges in computer vision, including perceptual similarities of semantically dis-
tinct concepts and perceptual variations in the possible manifestations of a single
concept [13, 14], much as to limitations inherent in the assumption that seman-
tics can be rendered in a visual fashion. As a result of the aforementioned, the
learnt associations do not necessarily reflect the intended semantics, viz. the
associations implicitly targeted when providing the corresponding training ex-
amples, leading often to incomplete and conflicting classifications. Indicatively,
among the observations presented in [15], the weapon classifier proves to be more
efficient when querying for palm trees, while when querying for instances of fire
and flames, the soccer classifier provides the highest performance.

Acknowledging the value of statistical learning techniques, yet aware of their
weaknesses, approaches towards the synergistic utilisation of explicit semantics
have become the subject of systematic research3. The Semantic Web (SW) in-
centive influenced to a large extent the choice of the investigated representation
formalisms, favouring the use of SW languages [16, 17] and of the closely related
Description Logics (DLs) [18, 19]. As a result, a number of multimedia ontolo-
gies [20–23] have been proposed to represent perceptual features and to enable
linking with domain specific ontologies, in order to formalise the transition from
low-level features to semantic entities [24–27]. In addition, domain ontologies,
tailored to the analysis viewpoint as well, have been proposed in order to ac-
quire interpretations of higher abstraction through reasoning over automatically
extracted descriptions [28–32].

However, the effects entailing from the poor utilisation of semantics in sta-
tistical learning, namely the uncertainty inherent in the extracted descriptions
and the semantic inconsistencies issuing from conflicting descriptions, tend to
be overlooked. Specifically, the extracted classifications are commonly treated as
crisp assertions, neglecting significant information regarding the plausibility of
the acquired descriptions. Furthermore, in the majority of cases, the extracted
descriptions are assumed to be semantically coherent. As a result, the use of ex-
plicit conceptual models and reasoning are rendered mainly as means to acquire
abstract and complex descriptions by exploiting logical associations between the
extracted descriptions, such as the inference of a person instance by reasoning
over instances of face and body in a certain configuration. Evidently though,
both aforementioned assumptions are rather weak and hardly correspond to the
pragmatics of the problem at hand.

Aiming to enhance the utilisation of semantics and alleviate part of the afore-
mentioned effects in the accuracy and completeness of descriptions that are ex-
tracted by means of machine learning approaches, we present in this paper a
reasoning framework that utilises fuzzy DLs semantics in order to interpret the

3 Indicatively, besides individual research activities, this pursuit has been the prin-
cipal objective in a substantial number of European projects including ace-
Media (http://www.acemedia.org/aceMedia), K-Space (http://kspace.qmul.net),
BOEMIE (http://www.boemie.org/), X-Media (http://www.x-media-project.org/),
MESH (http://www.mesh-ip.eu/), SALERO (http://www.salero.eu/), etc.



output of the classifiers into a semantically consistent interpretation. The use
of DLs allows us to formally capture the semantics underlying the concepts of
interest, while the fuzzy extensions provide the means to model the vagueness
encompassed in the extracted classifications. Furthermore, extending on earlier
investigations [33], the presented framework supports the explicit representa-
tion of the constituent image regions, allowing, as explained in the sequel, the
more effective utilisation of the underlying semantics. The contribution of the
proposed reasoning framework can be summarised in the following.

– The uncertainty of the descriptions made available through the application of
learning based approaches is formally handled and taken into consideration
in the interpretation of the descriptions’ semantics.

– The inconsistencies resulting from conflicting descriptions, due to the afore-
mentioned limitations in the learning of associations between perceptual fea-
tures and corresponding semantics, are identified and resolved.

– Besides formally grounding the acquisition of the most plausible interpreta-
tions in the presence of multiple possible interpretations, the proposed fuzzy
DLs based reasoning framework supports the identification of image regions
where concepts, missed in the initial descriptions, may be present.

The rest of the paper is organised as follows. Sections 2 and 3 outline the
reasons that motivated our investigation and the particular issues involved in the
application of formal reasoning in semantic image analysis. Section 4 presents
the proposed reasoning framework architecture and its constituent reasoning
tasks, while Section 5 elaborates the implementation details. Section 6 presents
the evaluation of the proposed framework and the experiences drawn. Relevant
initiatives are presented in Section 7, while Section 8 summarises the paper and
outlines future research directions.

2 Motivation

Statistical concept classifiers exhibit highly variable performance, yet support
generic learning for a substantial number of concepts [15, 34–36]. As demon-
strated in a recent study [37], satisfactory retrieval can be achieved, even when
the detection accuracy is low, provided that sufficiently many concepts are used,
as long as these concepts can be related to one another in some reasonable way.
In addition, the conducted experiments reveal that when there exist semantic
associations between the addressed concepts, then these concepts can serve as
an intermediate layer to enhance the reliability of the extracted semantic image
descriptions. The conducted experiments consider semantic video descriptions,
yet the results can be easily generalised for the case of image descriptions, since
the examined concept classifiers address notions detected per video frames, i.e.
without the use of temporal information.

The observations drawn by the aforementioned study regarding the potential
of incorporating semantics, do not outline a new direction; approaches following
the knowledge-directed paradigm have been reported since the early 70s, while



they boomed in the 80s and the early 90s in accordance with the respective
advances in the field of Artificial Intelligence (AI) [38–40]. Yet, [37] stresses the
greater potential that the recent advances in statistical concept classifiers con-
duce regarding the utilisation of explicit knowledge and reasoning as the means
to alleviate the limitations related to the discriminative capacity of perceptual
features with respect to the intended semantics.

As already described though, the limitations related to the rather poor util-
isation of semantics are intertwined with the uncertainty involved in extracting
semantic descriptions from images. As such, the fundamental question of what
constitutes the semantics of this uncertainty, emerges. The answer lies in the
viewpoint adopted in learning regarding the stipulation of semantics in accor-
dance to perceptual features. Approaches where concepts are detected on the
grounds of perceptual similarity, imply a prototypical set of feature values that
constitute a visual/perceptual definition of the concept. As the presence of a
concept is determined based on the similarity of those values, concepts can be
considered as fuzzy sets, where the similarity (distance) function serves the role
of the membership function. Contrariwise, learning approaches that utilise con-
cepts’ co-occurrence and correlation, implement a probabilistic interpretation of
the features to concepts transition. Support Vector Machines (SVMs) consti-
tute a popular example of the former category, while Bayesian Nets and Hidden
Markov models [41] fall in the latter.

Apparently, both types of uncertainty pertain to the extraction of image se-
mantics, much more since they address complementary aspects. A classification
indicating that a specific image region constitutes an instance of sea with a
probability of 0.7, refers to the presence or not of sea; no information is provided
about how blueish this sea region might be. A classifier though that assess an
image region to belong to the sea concept with a degree of 0.7, quantifies the
similarity of this region with what has been learned as the perceptual defini-
tion of sea. For further details on the different semantics of the two uncertainty
types, the reader is referred to [42]. The investigation of a reasoning framework
that considers both types of uncertainty is undoubtedly of particular interest. In
this work though, we focus on the fuzzy perspective of the extracted semantic
descriptions, since we consider it an significant starting point for the appro-
priate handling of semantic classification results, and a useful insight into the
complementary role of probabilistic reasoning.

The aforementioned incentives, in combination with the limited support for
handling uncertainty and inconsistency provided by the state of the art ap-
proaches in the utilisation of explicit semantics, designated the selection of fuzzy
DLs as the investigated knowledge representation. The logic grounded semantics
ensure conceptual transparency and well-defined reasoning mechanisms, while
maintaining a strong connection to the Semantic Web community. In addition,
the fuzzy extensions allow to formally capture the imprecision in the from of
vagueness that pertains to learning approaches based on perceptual similarity,
such as SVMs. In combination with the particular expressivity requirements de-
scribed in the following Sections, the aforementioned have been the main reasons



for preferring fuzzy DLs over some other logic based formalism, such as fuzzy
first order logic, or fuzzy rules.

3 Fuzzy DLs in Semantic Image Analysis: Specifications
and Requirements

Fuzzy DLs extend the model theoretic semantics of classical DLs [18] to fuzzy
sets [43, 44] and account for a significant share of the literature studying the
representation of imprecise information [45–50]. Standardisation initiatives, such
as the W3C Uncertainty Reasoning for the World Wide Web Incubator Group,
which recently released the final report on reasoning under uncertainty in the
Semantic Web4, outline further the significance of handling imprecise knowledge
in real world applications.

Table 1. Fuzzy interpretation of DL constructors following Zadeh semantics [49].

> I = 1
⊥ I = 0
(¬ C)I = 1-CI(d)
(C u D)I = min{CI(d),DI(d)}
(C t D)I = max{CI(d),DI(d)}
(∀ R.C)I = infd′∈∆max{1−RI(d, d

′
), CI(d

′
)}

(∃ R.C)I = supd
′∈∆min{RI(d, d

′
), CI(d

′
)}

The semantics of a fuzzy DL language are given by a fuzzy interpretation
I = (∆I , .I), where ∆I is an non-empty set of objects comprising the domain of
interpretation, and .I a fuzzy interpretation function, which assigns each in-
dividual a to an element aI ∈ ∆I , each concept name A to a membership
function AI : ∆I → [0, 1], and each role name R to a membership function
RI : ∆I ×∆I → [0, 1] [47, 48]. Table 1, illustrates the standard interpretation of
typical DL constructors.

A fuzzy knowledge base consists of a TBox defined by a finite set of fuzzy
concept inclusion and equality axioms, and an ABox defined respectively as a
finite set of fuzzy assertions. A fuzzy assertion [47] is of the form a : C ./ n and
(a, b) : R ./ n, where ./ stands for ≥, >, ≤, and <. Intuitively a fuzzy assertion
of the form a : C ≥ n means that the membership degree of the individual a
to the concept C is at least equal to n. The standard reasoning services (e.g.
instance checking, satisfiability, subsumption etc.) are adapted analogously. For
example, concept satisfiability with respect to C requires the existence of an
interpretation under which there will be an individual belonging to C with a
degree n ∈ (0, 1].

4 http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/



Fig. 1. Example outdoor image and segmentation mask.

(im : Rockyside) ≥ 0.50 (im : Countryside buildings) ≥ 0.47
(im : Roadside) ≥ 0.48 (im : Forest) ≥ 0.65
(im : Seaside) ≥ 0.46

(r0 : Building) ≥ 0.68 (r0 : Trunk) ≥ 0.54
(r1 : Sky) ≥ 0.70 (r1 : Person) ≥ 0.59
(r2 : Building) ≥ 0.66 (r2 : Trunk) ≥ 0.58
(r3 : V egetation) ≥ 0.56 (r3 : Rock) ≥ 0.51
(r4 : Building) ≥ 0.66 (r4 : Spectators) ≥ 0.54
(r5 : Trunk) ≥ 0.55 (r5 : Building) ≥ 0.53
(r6 : Building) ≥ 0.61 (r6 : Board) ≥ 0.51
(r7 : Building) ≥ 0.60 (r7 : Board) ≥ 0.52
(r8 : Tree) ≥ 0.56 (r8 : Grass) ≥ 0.55

Fig. 2. Scene and object level classifications results for the example image of Fig. 1
using SVM-based concept classifiers.

Using fuzzy DLs as the knowledge representation language for the semantic
interpretation of descriptions provided by statistical concept classifiers, renders
the available classifications into fuzzy assertions and the available domain knowl-
edge into corresponding terminological axioms. Figures 1 and 2, illustrate an ex-
ample outdoors image, its segmentation mask and the extracted classifications
in the form of fuzzy DLs assertions.

As illustrated, an image may be asserted to belong to multiple scene level
concepts, not necessarily semantically related; similarly, a region may belong to
multiple object level concepts. This is not unusual and accounts for two equally
common situations met in the extraction of semantic image descriptions. First,
the use of multiple classifiers for a single concept in order to benefit from mul-
tiple sources of information, and second, classification errors that result in false
positive responses for semantically contradictory concepts. For readability, we
consider at most two instances per region.



Table 2. Example TBox extract for the domain of outdoor images.

axiom 1: Forest v Landscape u ¬ (Countryside buildings t Roadside)
axiom 2: Roadside v Landscape u ¬ (Forest t Countryside buildings)
axiom 3: Countryside buildings v Landscape u ¬ (Forest t Roadside)
axiom 4: Landscape v Outdoors u ¬ (Rockyside t Seaside)
axiom 5: Seaside v Outdoors u ¬ (Landscape t Rockyside)
axiom 6: Countryside buildings v ∃ contains.Building t ∃ contains.Grass
axiom 7: Countryside buildings u ∃contains.(Spectators t Board u Rock) v ⊥

Assuming the TBox of Table 2 and going through the respective assertions,
one notices that there exist semantic discrepancies with respect to the extracted
scene level descriptions, since according to axioms 1−6 only one of them can be
true, as well as between the scene level descriptions and the object level ones.
Contradictions may be straightforward, such as in the case of (im:Roadside) ≥
0.52 and (im:Forest) ≥ 0.65, or implicit such as in the case of (im:Forest) ≥ 0.65
and (r0:Building)≥ 0.68, where through inference the latter assertion entails that
(im:Countryside buildings) ≥ 0.68. Furthermore, the identification of inconsis-
tencies depends on the scene level concept used as a reference. Assuming for
example that the Forest scene description is valid, all region assertions referring
to the Building, Spectators and Board concepts entail inconsistency. Assuming
though that the Countryside buildings scene description is valid, inconsistencies
are raised by regions assertions referring to the concepts Spectators, Board and
Rock instead.

Consequently, in order to reach a coherent interpretation, the possible al-
ternative scene interpretations need to be identified and subsequently assessed
with respect to their plausibility. This means that for all possibly satisfiable
scene concepts, that is for all scene concepts for which a model exists when con-
flicts, the corresponding degrees of membership need to be computed in order
to provide a measure for their plausibility. Due to the logical relations between
the object and scene level concepts, the degree to which an image belongs to
a scene concept does not necessarily equal the degree provided by the respec-
tive scene concept classifier. Hence, in our current example, the satisfiable, and
thereby plausible, scene descriptions are (im:Countryside buildings), (im:Forest),
and (im:Rockyside); the corresponding minimum degrees are 0.68, 0.65 and 0.51.

Once the most plausible scene description is determined, the next step is to
ensure that the object level descriptions are not introducing semantic conflicts.
As in the case of scene level descriptions, the identification, tracking and re-
solving of such inconsistencies is intertwined with the semantics as defined in
the TBox axioms. In the considered example, the identification and resolving
of inconsistencies is rather straightforward, since all inconsistent assertions refer
to atomic concepts (i.e. Spectators, Rock, and Board). In the presence of an
axiom such as PersonuBench v Spectators though, the inconsistency could be



resolved in multiple ways, namely by removing all Person instances, all Bench
instances, or all instances of both classes. Selecting among the different alterna-
tives needs to take into account cost criteria encompassing the assertions’ degrees
of confidence in order to retain the available plausibility information.

The final step towards a more complete image description is to compensate for
missing assertions and enrich the existing descriptions by means of entailment.
Missing assertions refer to scene or object level descriptions that are entailed
by the computed scene interpretation, yet failed to be detected by the applied
concept classifiers. As elaborated in subsection 4.3, for the case of object level
descriptions, the proposed framework allows not only to recover the missing
assertions, but also to acquire suggestions regarding which of the input region
instances could be a possible match for the missing object level descriptions.
Enrichment on the other hand covers those cases where scene and object level
descriptions of higher abstraction can be inferred from the available ones. In
the running example, where Countryside buildings is designated as the most
plausible scene description, the presence of at least one region belonging to the
Building concept and one region belonging to the Grass concept is entailed, each
with a degree ≥ 0.68. As a result, the degrees of the region assertions referring to
the concept Building are updated, and so is the assertion concerning region r8,
which now becomes most plausible from the initially extracted one referring to
the concept Tree. Furthermore, due to axioms 3 and 4, the image is also asserted
as an instance of Landscape and Outdoors.

We note the significance of the existential (∃) and the disjunction (t) con-
structors for the aforementioned tasks. The existential quantification allows to
handle cases where the initial descriptions are incomplete, due to segmentation
fault or to erroneous classification, while the union constructor allows to repre-
sent and reason over the alternative scene interpretations in order to assess their
satisfiability. Considering rule formalisms instead, we would lack the possibility
to express existential quantification or use disjunction in the head of rules to
so as to state the entailment of multiple possible alternatives. Using fuzzy first
order logic, the latter would not pose a problem, yet we would be unable to infer
the existence of regions corresponding to concepts failed to be detected by the
classifiers, as described in detail in the following Section.

Finally, it is important to stress that the TBox aims to capture generic knowl-
edge reflecting the logical associations issuing from the semantics of the concepts
at hand, rather than data set specific conceptualisations, as the latter would risk
false implications when invoked on classifications over data sets with differing
attributes. For example, an axiom such as ∃contains.Tree u ∃contains.Trunk v
Forest may be representative for forest scenes for a given data set, yet in the
general case it could lead to biased inferences, as Tree and Trunk instances can
be as well found in many other scene descriptions. Restricting the included ax-
ioms to strict domain semantics modelling, the domain TBox can ensure that
the extracted descriptions are in compliance with the semantics of the concepts
they refer to.



4 Fuzzy DLs-based Reasoning Framework for Semantic
Image Analysis

Figure 3 depicts the proposed reasoning framework for managing the tasks out-
lined in the previous Section. As shown, the semantic interpretation of the de-
scriptions that are acquired through statistical learning is performed in three
steps. First, the most plausible description at scene level is determined. Next,
the inconsistencies in the initial descriptions are resolved with respect to the pre-
viously computed scene level interpretation. As, more than one plausible inter-
pretations may exist, during this step the different alternatives are ranked with
respect to plausibility criteria. The set of assertions with the highest ranking is
finally passed to the last step, where by means of logical entailment, assertions
pertaining to complex or missing descriptions are made explicit.

Object level

descriptions


Scene level

descriptions


    Final Semantic Annotation


person
person
 face
face


sand
sand


cliff
cliff
sky
sky


beach, natural, 

outdoor: scene

beach, natural, 

outdoor: scene


sea
sea


person
person
 face
face


sand
sand


cliff
cliff
sky
sky


beach, natural, 

outdoor: scene

beach, natural, 

outdoor: scene


sea
sea


Sky


Sea


Sea/Sky


Mountain/Sand


Cliff/Foliage


Person


Sky


Sea


Sea/Sky


Mountain/Sand


Cliff/Foliage


Person


Building


Conifers


Building


Conifers


Mountain Scene
Mountain Scene


Beach Scene


Outdoor Scene


Beach Scene


Outdoor Scene


   Initial Assertions


Examined Image


Machine Learning

descriptions extraction


Fuzzy
 DLs
 based reasoning framework


Scene level

interpretation


Consistency

handling


Enrichment


Fig. 3. Proposed fuzzy DLs based reasoning framework.

Extending the conceptual framework of [33], in the current approach, we
exploit localisation information for descriptions at object level. This is accom-
plished by explicitly representing the region which is associated with the ex-
tracted object concept descriptions, using the model of Table 3. According to it,
an image and its constituent regions are associated through the role contains,
while disjoint axioms make explicit the discrimination between scene and object
level concepts, as well as between an image and its regions. As illustrated, there
is no restriction on the number of descriptions at scene (respectively object) level
that may be assigned to an image (region).



Table 3. Annotation model for image and its constituent parts.

Image v SceneConcept
Region v ObjectConcept
Image ≡ ∃contains.Region
Image uRegion v ⊥
SceneConcept uObjectConcept v ⊥

Towards a more conceptually accurate model, the first axiom would need to
be revised as Image v ∃depicts.SceneConcept, so as to capture the fact that the
Image concept includes those objects in the domain of interpretation that are
associated with a SceneConcept instance through a depicts property. Similarly
for the third axiom which would become Region v ∃depicts.ObjectConcept. As
in the examined context though, both models would ensue the same inferences,
we preferred the model of Table 3 to avoid unnecessary complexity.

The explicit representation of the image regions has a twofold effect. On
one hand, it allows to generate final descriptions of higher informative value, as
object concept assertions are no longer associated only to the image (supporting
loose annotation) but also to specific regions. On the other hand, in the case of
inconsistent classifications, instead of simply removing the conflicting assertions
and ending up with regions with no description, we are now able to compute
suggestions of consistent object descriptions. In the following, the details of the
three reasoning tasks are given.

4.1 Scene level interpretation

The alternative scene interpretations constitute the possible models regarding
the interpretation of an image, and as a consequence for each SceneConcepti it
suffices to find one model such that SceneConcepti 6= Ø, instead of requiring
SceneConcepti 6= Ø for all models. Towards this end, and due to the logical
associations between concepts referring at the object level and concepts refer-
ring at the scene level, all assertions need to be taken into account in order to
check the satisfiability of the alternative scene descriptions. As a consequence,
all disjointness axioms in which scene level concepts are participating need to be
removed before checking for satisfiability, as otherwise possible inconsistencies
would reasoning and would prevent the effective utilisation of all information
carried in the available extracted descriptions.

The scene interpretation procedure, summarised in Table 4, consists in the
following steps. First, all disjoint axioms are removed and the TBox is revised
with respect to the currently examined concept SceneConcepti so as to avoid
conflicts when an image is inferred to belong both to SceneConcepti and its
complement ¬SceneConcepti. To accomplish this, the disjointness axioms are
revised so as to entail an instance of notSceneConcepti instead of triggering
an inconsistency. Considering the example TBox of 2, and for SceneConcepti
equal to Rockyside, the presence of a region (ri:Building ≥ di), with di ≥ 0.5
due to axiom 5 would entail (im:¬ Rockyside ≥ 0.5), rendering the available



Table 4. Scene level interpretation.

Scene Level Interpretation Algorithm

Input: scene level concepts hierarchy HSC , input assertions A
Output: glb for all satisfiable scene level concepts

1: for all hierarchy levels Li starting from the root
2: for all scene level concepts SCj ∈ Li

3: if ∃ satisfiable subsumee of SCj or i==0{
4: revise disjoint axioms adding nonSC j

5: check ¬ SCj satisfiabity
6: if ¬ SCj not satisfiable{
7: remove assertions inconsistent to SCj

8: update A and compute glb(SCj)
9: }
10: }
11: rank scene level concepts wrt glb

classifications inconsistent. Revising axiom 5 as Land− scape v notRockyside
though, the ABox remains consistent, and the assertion (im:notRockyside ≥ di)
is obtained instead.

Next, the satisfiability of each scene level description is checked considering all
initial assertions besides the told scene level assertions that refer to a scene con-
cept other than the currently examined one. Each scene concept SceneConcepti,
for which notSceneConcepti is not satisfiable constitutes a possible interpreta-
tion. Thereby, compared with [33] the checks required to determine the most
plausible scene descriptions, are reduced. To further improve the efficiency, the
checking of the scene concepts satisfiability utilises the subsumption relations
between the scene concepts. Thus, if a concept SceneConcepti is computed to
be unsatisfiable, we skip the checks of all concepts subsuming it. For all satis-
fiable scene level concepts, the respective greater lower bound (glb) values are
computed, by following the inconsistency handling methodology described in the
sequel. Subsequently, the glb values are ranked and the scene concept with the
highest one is selected as the most plausible scene description.

4.2 Inconsistency handling

Having computed the scene level concepts that constitute possible interpreta-
tions, the next step is to obtain for each of them the most optimistic interpre-
tation, in order to assess the most plausible one. Towards this end, for each
satisfiable scene concept, the inconsistencies with respect to the input object
concept assertions need to be identified and resolved. Following a similar pro-
cedure to the one described above, the TBox is revised so that the disjoint-
ness axioms involving the examined scene concept and object level ones, instead



of causing an inconsistency, entail an instance of a correspondingly introduced
nonObjectConcepti. As more than one object level concepts ObjectConcepti
may give rise to inconsistencies, a conjunctive expression is formed including
the respective nonObjectConcepti concepts and the generic nonObjectConcept
concept is defined as it subsumer. To resolve the inconsistencies, we employ the
procedure described in the following, until no instance of nonObjectConcept
with glb greater or equal than 0 exists.

First, we address inconsistencies incurred directly by told descriptions. This
translates into checking whether there exist asserted individuals belonging to
ObjectConcepti concepts such that ObjectConcepti v nonObjectConcepti. The
handling of such assertions is rather straightforward and consists in their re-
moval. Addressing asserted individuals first, prunes the search space during the
subsequent tracking of the inferences that lead to an inconsistency. Next, we
consider assertions referring to complex concepts, i.e. concepts for which the left
hand side of the axioms in which they participate is an expression rather than
an atomic concept. Contrary to the previous case, we now need to analyse the
involved axioms in order to track the asserted descriptions that cause the incon-
sistency. Furthermore, these axioms determine which of the descriptions should
be removed so as to reach a consistent interpretation. To accomplish this, we
build on relevant works for resolving unsatisfiable DL ontologies [51, 52], and
employ a reversed tableaux expansion procedure, summarised in Table 5.

The main difference with respect to the relevant literature is that in our ap-
plication framework, we consider solely the removal of assertions, rather than
the removal or weakening of terminological axioms. The expansion procedure
starts having as root node the (im : nonObjectConcept ≥ di) assertion, where
di the computed degree, and continues until no expansion rule can be applied.
As illustrated, in the case of inconsistencies caused by axioms involving the con-
junction of concepts, there are multiple ways to resolve the inconsistency and
reach a consistent interpretation. Specifically, there as many alternative interpre-
tations as the sum of combinations C(N, k), where N the number of conjuncts
and k = 1, .., N . In order to choose among them, we rank the set of solutions
according to the number of assertions that need to be removed and the average
value of the corresponding degrees. Again, corresponding nonObjectConcepti
definitions are added as in the case of scene concepts to avoid ending up with
inconsistent ABoxes.

4.3 Enrichment

The final step considers the enrichment of the descriptions by means of typical
fuzzy DLs entailment. Specifically, once the scene level interpretation is deter-
mined and all inconsistencies have been resolved, we end up with a semantically
consistent subset of the input assertions. To render the inferred descriptions ex-
plicit, corresponding queries are formulated and the responses are added to the
final image interpretation. Inferred descriptions may refer either to concepts not
addressed by the available classifiers (the Landscape concept constitutes such a



u-rule if (a : C1 u C2) ∈ L(x)
then L(y)=L(x)\ {(a : C1)} and

L(z)=L(x)\{(a : C2)} and
L(w)=L(x)\{(a : C1 u C2)}

t-rule if (a : C1 t C2) ∈ L(x)
then L(x)=L(x)\{(a : C1 t C2)}

where Ci −→ A | C u D | ∃R.D

Table 5. Expansion rules for computing the alternative sets of consistent assertions.

concept for the example considered in Figures 1,2), or to concepts for whom the
corresponding classifiers failed to produced a positive response.

Extending the framework of [33], the explicit representation of the constituent
image regions, allows to model object level descriptions as instances referring to
specific regions of the image, rather than to the entire image though the indirect
representation of regions in the form of (im : ∃contains.ObjectConcepti) asser-
tions. Such modelling allows for additional benefits besides the enhancement of
loose image descriptions5. Specifically, once the inconsistency handling task is
completed, there might be regions for which all initial assertions have been re-
moved. Exploiting the visual coherency between the initial assertions associated
to these regions and the assertions identified as missing, we can infer possible
suggestions regarding object level concepts that such regions may depict. Fur-
thermore, based again on the visual coherency of the concepts addressed by
the classifiers, additional suggestions for missing assertions can be inferred with
respect to regions that already have an object level concept assigned to them.

In order to capture and model the visual coherency of the considered con-
cepts, we utilise the confusion matrixes acquired during the training phase of the
classifiers and extract axioms of the form ObjectConcepti v ObjectConceptj t
ObjectConceptj+1 t . . ., where the concepts ObjectConceptj+n represent object
concepts that tend to be misclassified as instances of ObjectConcepti under a
given scene description. The main reason for adopting such an approach, is that
regions depicting visually similar object concepts often happen to be falsely seg-
mented as one. As illustrated in the evaluation Section 6, the purpose of such
suggestions is to facilitate the interaction with a subsequent step of analysis,
including possibly re-segmentation and the re-application of specific classifiers
on selected regions.

5 Implementation

In the previous Section, we described the individual tasks comprising the pro-
posed fuzzy DLs-based reasoning framework for the enhancement of semantic
5 Loose (weak) annotation refers to object level descriptions that are associated to the

entire image rather than the specific image regions.



image interpretation. In the following, we examine the proposed reasoning frame-
work from an implementation perspective. Since, each task utilises corresponding
standard fuzzy DLs reasoning services in order to accomplish its goals, central
role in the proposed reasoning framework holds the reasoning engine that realises
these core fuzzy DLs inference services.

The choice regarding which specific implementation should be employed un-
der the proposed framework was based on the existing available fuzzy DL reason-
ing engines and the requirements posed with respect to expressivity power and
interaction capabilities. The sequence of works by Straccia [47, 48, 53] and Stoi-
los et al. [49, 50, 54] distill the advancements accomplished with respect to the
formal definition of fuzzy extensions semantics and of corresponding reasoning
algorithms. Complementary to the theoretic foundations, respective reasoning
engine implementations have been developed, namely the Fuzzy Reasoning En-
gine6 (FiRE) and the fuzzyDL7.

FiRE [55] supports querying an f-SHIN knowledge base for satisfiability, con-
sistency, subsumption, and entailment, under Zadeh semantics; general concept
inclusions, roles and datatype support are among the planned future extensions.
fuzzyDL [56] supports satisfiability, consistency, subsumption, and entailment
for the language fuzzy SHIF, further extended by concrete fuzzy concepts, i.e.
concept defined through an explicit fuzzy membership function, concept mod-
ifiers that allow to change the membership function of a fuzzy concept, and
functional datatypes attributes. The reasoner accepts three types of semantics
for the interpretation of conjunction, disjunction, complement and implication,
namely Zadeh semantics, Lukasiewicz, and crisp. Although both available rea-
soners support very high expressivity and provide support for the standard rea-
soning services of satisfiability, instance checking, disjointness and subsumption,
the factor that differentiates them is the handing of general concept inclusions.
As illustrated in Sections 2 and 3, handling general concept inclusions is cru-
cial as it allows to model the existence of specific regions, thus specific object
level concept instances, which in turn imply corresponding scene concept in-
stances. Otherwise, the object level instances would be reduced to scene concept
instances, and subsequently the region individuals would become tautological to
the respective image individual. Given the above considerations, we selected the
fuzzyDL reasoner.

Fig. 4 shows an abstract view of the proposed reasoning framework archi-
tecture regarding the interaction between the proposed reasoning framework
and the fuzzyDL reasoning engine. As illustrated, and already described in the
detailed presentation of the procedure comprising each of the three reasoning
tasks, the fuzzyDL engine provides the standard inference services required to
support the semantic interpretation of an image. The proposed reasoning frame-
work coordinates the required inference services by designating the each time
considered TBox and ABox, performing appropriate translations to avoid in-
consistencies and formulate respective queries so as to determine the conditions

6 http://www.image.ece.ntua.gr/∼nsimou
7 http://faure.isti.cnr.it/∼straccia/software/fuzzyDL/fuzzyDL.html
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Seaside Rockyside Roadside Countryside Forest
buildings

Fig. 5. Example images of the supported scene level classifiers.

for the subsequent processing steps. Hence, it serves as an external mechanism
that modularises and harmonises the interpretation into distinct subproblems
on which the fuzzyDL can be invoked.

In addition, the proposed framework provides support for subtasks addressing
the handling of semantics that cannot be invoked as distinct services of fuzzyDL.
One such example is the tracking and resolving of inconsistencies, where besides
the transformation of the TBox so that an inconsistency entails an instance of
respectively introduced nonConcepts, the semantics of the axioms involved in
the creation of an inconsistency are taken into account in order to compute the
possible alternative solutions. We note that regarding the TBox revision, parts of
the TBox translations, specifically the transformations during the satisfiability
checks in the scene level interpretation task, have been manually performed, as
the emphasis in the current experimental implementation is placed on assessing
the feasibility of the proposed approach.

Another example is the computation of possible models with respect to a
specific scene concept, given a TBox and the initial region assertions. In this case,
first the TBox needs to be revised so that inconsistencies can be tracked and
removed, and afterwards the possible models (i.e. the different configurations
regarding the association of each region to one of the disjuncts representing
the available classification results) need to be explicitly provided to fuzzyDL as
distinct ABoxes. The latter is essential in order to compute the corresponding
glb values for the examined scene concept, as otherwise it would be impossible
to entail a value different than ≥ 0 unless all disjuncts per region addressed the
same concept. Going back to the example of Figure 2 for instance, it would be
impossible to infer the scene concept Countryside buildings unless there existed
a region ri for which all alternative possible classification where the same one,
i.e. that of Building.

6 Evaluation

In order to assess the potential of the proposed reasoning framework for the
purpose of enhancing the semantic coherency and completeness of image de-



scriptions, we experimented in the domain of outdoor images. The sets of scene
(Cscene) and object (Cobject) level concepts addressed by the employed SVM
based classifiers are Cscene={Roadside, Rockyside, Countryside buildings, Sea-
side, Forest} and Cobject={Building, Roof, Grass, Foliage, Dried-Plant, Sky,
Rock, Tree, Sea, Sand, Boat, Road, Ground, Person, Trunk, Wave}.

Figure 5 illustrates example images of the addressed scene level concepts. As
illustrated, Seaside images refer to coastal and beach scenes, Rockyside ones
include mountainous images with little vegetation, Roadside images refer to
landscape scenes depicting parts of road, Countryside buildings represent scenes
where buildings are present yet not in an urban environment, and finally Forest
images correspond to natural landscapes with abundant vegetation, including
trees, foliage, trunks, etc.

Countryside buildings v ∃contains.Building u ∃contains.Grass
Countryside buildings v Landscape
Grass t Tree v Foliage
Rockyside v ∃contains.Rock
Roadside v ∃contains.Road
Roadside v Landscape
∃contains.Building v Countryside buildings
∃contains.Sea ≡ Seaside
Beach ≡ Seaside u ∃contains.Sand
∃contains.Sky v Outdoor
Trunk v Tree
Wave v Sea
Boat v Sea
Forest u (Roadside t Countryside buildings) v ⊥
Roadside u Countryside buildings v ⊥
Rockyside u (Seaside t Landscape)v ⊥
Landscape v u Outdoor ⊥
Forest u ∃ contains.(Rock t Sea t Sand t Building t Road) v ⊥
Rockyside u ∃ contains.(Sea t Sand t Building t Road) v ⊥

Table 6. Example extract of the outdoor image domain TBox developed for evaluation
purposes.

From an initial set of 700 outdoor images, two sets of 350 images have been
assembled: one served as the training set on which the learning of concept clas-
sifiers was performed, and the second served as the test set. Ground truth for
all images has been manually generated at object and scene level. The manual
annotation and training of the classifiers, both comprising quite cumbersome
and resource intensive activities (corresponding to an average of two to three
person months - for the number of concepts and images considered in the spe-
cific experiment), constitute efforts already spent for the purpose of training
and assessing the performance of the employed SVM based classifiers [57]. Thus,



the only extra resources required with respect to the proposed reasoning frame-
work relate to the transformation of the already existing ground truth files and
extracted descriptions to a format compliant to the one used by the proposed
reasoning framework, which amounts to a negligible amount of effort. The reason
for stressing this out, is to outline that the application of the proposed reasoning
framework does not entail any additional resources with respect to annotation
tasks.

In order to apply the proposed reasoning framework, a TBox that captures
the semantics of the domain addressed by the available classifiers needs to be
constructed. Table 6 illustrates an extract of the outdoor images TBox that has
been developed for the carried out experimentation. It includes 25 concepts and
one role. The included concepts comprise the scene and object level concepts
supported by the classifiers, Landscape, Outdoor, and the generic SceneConcept
and ObjectConcept concepts that are used to enforce that the discrimination
between the two levels of concepts; the respective role is contains, which links
an image to its constituent regions, and scene level concepts to object level ones.

Approximately fifty axioms, including the transformations required to avoid
inconsistencies with respect to the alternative scene level interpretations, are
used to capture the interrelations of the involved scene and object level con-
cepts; this number increases further, when taking into account the additional
axioms appended during the handling of inconsistencies. We note though, that
not all axioms are loaded at once to fuzzyDL, since the proposed reasoning
framework coordinates, as previously explained, the axioms and assertions over
which the reasoning services of fuzzyDL are invoked. As a consequence, the com-
plexity remains too low to incur performance concerns, and similar observations
have resulted when experimenting with larger TBoxes, as long as the considered
ABoxes remained similar in size.

Specifically, using a virtual Linux machine, running on XP Windows, with
an Intel Core quad processor, requires about three hours and twenty minutes to
process the complete test set. Individual image processing times, vary from two
seconds to one minute and half, depending on the given assertions and the com-
plexity of resolving the encountered inconsistencies. Actually, the inconsistency
handling process, which computes the possible consistent alternatives by track-
ing the definitions involved, and the satisfiability and glb queries communicated
to fuzzyDL are the most time consuming tasks. The average memory required
per image is 26 MBs, of which only a small fragment, namely 1/100, is consumed
by the proposed framework, the rest committed by the evoked fuzzyDL services.
Both observations relate to the fact that the proposed reasoning framework ad-
dresses mostly the coordination of the input and queries to be communicated to
the fuzzyDL than realising itself core inference services, with the exception of
tracking inconsistencies.

In order to quantify the performance of the proposed approach, we compared
the accuracy and completeness of the obtained image descriptions, with the
descriptions provided by means of classification, as well as with the descriptions
acquired when using the reasoning framework of our previous study [33]. The



Table 7. Evaluation of analysis and reasoning performance for scene level concepts.

Analysis Reasoning [33] Reasoning

Concept Recall Precision F-M Recall Precision F-M Recall Precision F-M

Rockyside 0.68 0.70 0.69 0.68 0.79 0.74 0.65 0.77 0.72

Seaside 0.85 0.67 0.75 0.86 0.72 0.78 0.79 0.75 0.78

Beach - - - 0.45 0.76 0.57 0.45 0.76 0.57

Roadside 0.68 0.69 0.69 0.72 0.70 0.70 0.72 0.63 0.67

Forest 0.75 0.63 0.69 0.74 0.68 0.71 0.76 0.68 0.72

Countryside 0.30 1.0 0.46 0.60 0.86 0.71 0.60 0.86 0.71
buildings

Landscape 0.75 0.71 0. 0.87 0.85 0.85 0.87 0.85 0.85

Outdoor - - - 1.0 1.0 1.0 1.0 1.0 1.0

last allows for a first estimate on the added value of explicitly representing the
individual image regions and the alternative object descriptions associated with
them. As evaluation metrics, we adopted recall, precision and and F-measure,
according to the following definitions.

– Precision (p): number of correct assertions extracted/inferred per concept
divided by the number of assertions that were extracted/inferred for the
given concept.

– Recall (r): number of correct assertions extracted/inferred per concept di-
vided by the number of assertions referring to that concept that are present
in the ground truth image descriptions.

– F-measure: 2 ∗ p ∗ r/(p + r).

Table 7 gives the performance of the classifiers, of the reasoning framework
presented in [33], and of the currently proposed reasoning framework, for the
case of scene level concepts. Compared to the performance of the classifiers, we
note that the application of the proposed reasoning framework incurs a signif-
icant improvement. Going through the respective domain axioms, it is easy to
correlate the extend of enhancement to the extent of semantic relations between
object level concepts with scene level, particularly axioms that entail a scene
level descriptions based on object level descriptions. Compared with the respec-
tive reasoning performance of [33], the explicit representation of the individual
image regions and the corresponding object level assertions appears to have a
rather negligible effect, as the slight improvement observed for concepts such as
Roadside and Forest is counterbalanced by the slight deterioration with respect
to the Rockyside and Seaside concepts.

Table 8 compares the respective performance for descriptions at object level.
As shown, besides the Boat and Grass concepts, the application of the reasoning
framework of [33] improves significantly the performance compared to the sole
application of the classifiers. This is a direct consequence of the fact that the



Table 8. Evaluation of analysis and reasoning performance for object level concepts.

Analysis Reasoning[33] Reasoning

Concept Recall Precision F-M Recall Precision F-M Recall Precision F-M

Building 0.54 0.69 0.60 0.62 0.86 0.72 0.62 0.64 0.63

Roof 0.33 0.54 0.41 0.33 0.75 0.46 0.43 0.63 0.52

Grass 0.49 0.42 0.45 0.30 0.52 0.38 0.83 0.56 0.67

Vegetation 0.48 0.84 0.61 0.86 0.86 0.86 0.80 0.49 0.61

Dried-Plant 0.07 0.11 0.08 0.07 0.13 0.10 0.12 0.33 0.18

Sky 0.95 0.93 0.94 0.95 0.93 0.94 0.96 0.92 0.94

Rock 0.65 0.45 0.53 0.69 0.70 0.69 0.57 0.57 0.57

Tree 0.49 0.52 0.51 0.56 0.47 0.51 0.83 0.46 0.59

Sand 0.02 0.10 0.03 0.57 0.45 0.50 0.57 0.45 0.50

Sea 0.69 0.60 0.64 0.85 0.69 0.76 0.75 0.69 0.72

Boat 0.41 0.71 0.52 0.33 0.66 0.44 0.44 0.57 0.5

Road 0.50 0.69 0.58 0.69 0.71 0.70 0.77 0.52 0.62

Ground 0.26 0.33 0.29 0.26 0.33 0.29 0.49 0.45 0.47

Person 0.75 0.51 0.61 0.75 0.51 0.61 0.86 0.45 0.61

Trunk 0.26 0.28 0.27 0.26 0.28 0.27 0.33 0.22 0.27

Wave 0.25 0.5 0.33 0.25 0.5 0.33 0.25 0.5 0.33

considered object level concepts are characterised by rich semantics with respect
to the scene level concepts that constitute their context of appearance. The
behaviour observed with respect to the Boat and Grass concepts relates to the
risks entailed by a false scene level interpretation, which may incur in the case
of very poor classification performance, in which case the input descriptions
suggest interpretations other than the actual one. Going for example through
the images for which Boat assertions where falsely removed, thus incurring the
observed lowering in the recall rate, we noticed that the corresponding prevailing
scene level assertions were not incompliance with the actual scene semantics.

Similar considerations emerge when analysing the not so remarkable effect of
reasoning in the recall of scene level concepts such as Rockyside. Going through
the images depicting rocky side scenes, yet failed to be recognised as such,
we noticed that in all cases the classifiers had falsely detected another scene
level concept instead, despite the fact that the instantiations of the Rock con-
cept were successfully detected in the their majority. Adding an axiom such as
∃contains.Rock v Rockyside would seem a reasonable idea for improving per-
formance on the grounds that the available axioms did seem to overlook this
knowledge. However, as in the case of Boat, such an amendment would imbal-
ance the trade off between what constitutes domain semantics and what is mere
tuning to the peculiarities of a given data set. In the discussed case, this is easy to
illustrate simply considering how often it is for rocks to appear in beach scenes.



Table 9. Evaluation of reasoning for object level concepts including the inferred sug-
gestions.

Reasoning

Concept Recall Precision F-M

Building 0.66 0.83 0.74

Roof 0.35 0.69 0.46

Grass 0.60 0.75 0.67

Vegetation 0.6 0.68 0.64

Dried-Plant 0.05 0.22 0.08

Sky 0.95 0.93 0.94

Rock 0.65 0.45 0.53

Tree 0.49 0.52 0.51

Sand 0.02 0.10 0.03

Sea 0.69 0.60 0.64

Boat 0.47 0.71 0.52

Road 0.64 0.78 0.70

Ground 0.27 0.31 0.28

Person 0.75 0.51 0.61

Trunk 0.41 0.33 0.37

Wave 0.25 0.5 0.33

The application of reasoning however, under the model proposed in this pa-
per that considers the individual regions, entails an even higher effect on the
completeness and accuracy of the object level descriptions. This a direct con-
sequence of the fact that instead of leaving a region without a corresponding
assertion in the case the classification results prove to be inconsistent, probable
suggestions are inferred that as illustrated incur further improvement. In order
to obtain the values illustrated in the Table, we considered for each region the
inference-based suggestion with the highest degree. As described in Section 4
though, more than one suggestions may be inferred for a given region, indepen-
dently of whether this region has been subjected to inconsistent classification,
aspiring to further assist in the identification of additional descriptions. As a
result, in the case of a more interactive analysis and classification module, the
proposed framework has the potential for an effectively higher enhancement.

Table 9 provides a rough assessment of the potential benefit such suggestions
entail, by measuring the respective recall and precision values when all sug-
gested additional descriptions are taken into account. As expected, the concepts
that exhibit the higher potential for improvement are those for which once the
scene description has been identified, their perceptual similarity with already
detected concepts allows them to be associated to existing region assertions. As
described, these suggestions have disjunctive semantics, i.e. they do not necessi-
tate the presence of the suggested concept but rather identify the most plausible
regions at which this concepts should be sought. Figure 6 provides an estima-
tion of the number of regions that should be searched if no such information was



available, i.e. when the only knowledge relates to the region assertions that have
been missed during classification, and the respective number of regions when the
suggestions provided by the proposed reasoning framework are used, provided
that they are correct; otherwise, the searching for a missing object reduces to the
same situation as in the former case. As illustrated when the inferred suggestion
are taken into account, the number of regions that need be examined is reduced
almost by half for concepts for which semantic and perceptual information is
available.

Fig. 6. Comparison of the number of regions that need to be examined for missing
object level assertions, when no additional knowledge is available (approach 1) and
when the inferred suggestions are taken into consideration (approach2).

Summing up the experiences and observations drawn from the conducted
evaluation, we note that the utilisation of explicit semantics has a positive im-
pact towards the semantic interpretation of image descriptions. The use of fuzzy
DLs allows to handle formally the degrees of confidence that accompany the
automatically extracted and utilise them both towards the identification of the
most plausible interpretation as well as for resolving inconsistencies. The preser-
vation of the degrees information in combination with the ensured semantic
coherency of the resulting image descriptions, renders the proposed framework a
useful contribution for semantic retrieval tasks that address multimedia content.
Furthermore, since the presented framework makes no assumption with respect
to the classifiers used to provide the initial classifications, it has the potential to
be employed in any image retrieval scenario involving vague. descriptions.



Indicatively, practical cases where the proposed framework could be em-
ployed include applications such as the TRECVID8 challenge, where among
the addressed tasks is the extraction of high-level visual content descriptions
using statistical learning. Within such context, the proposed reasoning frame-
work could be used to alleviate inconsistent classifications and to enhance the
completeness of the final content descriptions. Thereby, the reliability of the
descriptions is improved, while concepts that are not supported by the classi-
fiers, but are semantically related, can be afforded, sparing the time and effort
for building such classifiers. Another example application where the proposed
framework could be used is the DL-Media [58] retrieval system in order to allow
the ontological query service to perform over inconsistent image descriptions. In
general, as exemplified in the motivating examples and the carried out evalua-
tion, the proposed framework has the potential to enhance content descriptions,
and by consequence the corresponding content management tasks, acquired by
means of typical statistical learning techniques, when the underlying imprecision
refers to vagueness.

7 Related Work

The majority of relevant literature considers the investigation of crisp DLs-based
approaches. In the series of works presented in [28, 59, 29], crisp DLs are proposed
for inferring descriptions modelled as logical aggregates. A probabilistic approach
is described in the more recent one as a possible solution to the handling of the
ambiguity introduced in visual analysis [29]. Although the proposed approach
outlines an interesting direction, it lacks the technical details and evaluation that
would establish the potential contribution; furthermore, considering probabilistic
information, it addresses a different kind of uncertainty than what is presented
in this paper.

In [31], DLs have been extended with a rule-based approach to realise ab-
ductive inference over crisp analysis assertions. Alternative consistent interpre-
tations are computed by means of abduction and ranked using as criteria the
number of new individuals that need to be introduced9 and the number of as-
sertions that need to be left out in order to reach a consistent interpretation.
Examining the combined use of such an abductive reasoning framework with
the proposed one fuzzy, could be interesting for investigating the effect in the
ranking of alternative interpretations.

In [60] DLs are used to realise the interpretation of feature values pertaining
to colour, texture and background knowledge to semantic objects. To this end a
pseudo fuzzy algorithm is presented to reason over the calculated feature values
with respect to the prototypical values constituting the definition of semantic
objects. Additionally, topological knowledge is utilised to exclude inconsistent
8 http://www-nlpir.nist.gov/projects/trecvid/
9 This is a direct result of treating the concepts to be inferred as aggregates of simpler

ones and an interpretation as the quest of those aggregated and simple assertions
that once introduced make use of the analysis extracted assertions.



associations of semantic objects to given image segments. More specifically, in
addition to the axioms representing the domain topology, axioms are introduced
to capture topologically inconsistent relations. During a post processing step,
individuals participating in the latter type of axioms are iteratively removed.
Compared to the approach to inconsistency handling presented in this paper,
[60] does not address the semantics of expressive constructors, while neither
the implementation details of this postprocessing step nor evaluation results are
given.

In [30], DLs and rules have been utilised for video annotation using crisp
semantics. Additionally, there is no mentioning to what happens in the case of
inconsistency. In [61], a DLs based approach to medical image annotation is pre-
sented under the assumption of crisp, consistent analysis extracted descriptions.
In [62] a reasoning approach adhering to fuzzy logic principles was investigated
for the purpose of integrating image descriptions extracted by means of visual
analysis and textual analysis, regarding user entered descriptions, while in a
more recent study presented in [33], a fuzzy DLs based reasoning framework
has been proposed for the enhancement of initial descriptions acquired through
statistical classifiers. As aforementioned, the presented approach extends on the
last two investigations, building upon the acquired experiences.

Fuzzy DLs have been proposed in [58] for the purpose of semantic multimedia
retrieval; the fuzzy annotations however are assumed to be available. Similar
considerations have been investigated in older works such that of [63], where
again the usefulness and significance of multimedia content descriptions that
reflect the uncertainty present is pointed out. In the context of analysis, fuzzy
DLs have been only recently explored in [55], where fuzzy DLs reasoning is used
to infer semantic concepts based on part-of relations and to subsequently merge
at image level. Possible inconsistencies in the analysis extracted description on
which part-whole reasoning is employed is not addressed. Fuzzy logic semantics
have also been investigated in [64] under a different application context, namely
for the purpose of supporting personalised information retrieval. In contrast
to the approach presented in this paper, the emphasis is placed on weighted
fuzzy concepts that are used to represent user preferences and contextualised
preferences in order to allow the ranking of retrieved documents with respect to
their relevance.

8 Conclusions and Future Work

The richness of visual information and the growth in the volume made available,
render the potential for the exploitation of image content tremendous. Although
the role of machine learning in the extraction of image semantics continues to
grow, the reported endeavours show that the weakness to effectively incorporate
semantics bears significant limitations in terms of the number of concepts that
can be supported and the robustness of the attained performance. At the same
time, the utilisation of explicit semantics as means to partially alleviate and
enhance descriptions extracted through statistical learning presents an appealing



potential, as suggested by recent studies addressing both research and industrial
aspects [37, 65].

Utilising fuzzy DLs semantics, the proposed reasoning framework captures
the uncertainty of the extracted descriptions and accomplishes their integrated
interpretation, while resolving inconsistencies rising from contradictory descrip-
tions. In addition, by means of logical entailment, the final interpretation is
further enriched; thereby, the need for training classifiers for semantically re-
lated concepts is partially alleviated, while missing descriptions due to segmen-
tation and classification errors can be partially compensated. Experimentation
has shown promising results, that although not conclusive yet, suggest that the
proposed framework has the potential to serve as a useful contribution.

As indicated earlier in the paper, the investigation of a reasoning framework
that combines fuzzy and probabilistic reasoning constitutes a challenging direc-
tion for future work. The motivation issues from the fact that the two types of
uncertainty serve complementary purposes, hence suggesting a strong potential
for achieving mutual benefit. However, more immediate directions for future in-
vestigations constitute on one hand on the extension of the presented reasoning
framework so as to handle spatial knowledge, as well as the formalisation of the
proposed reasoning tasks based on the drawn experiences with respect to the as-
pects that render the typical DL services inappropriate for direct exploitation in
the problem of semantic image interpretation. Finally, towards more conclusive
observations, we plan to extend our experimentation to larger, public data sets.
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