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ABSTRACT

Activity recognition is one of the most active topics within
computer vision. Despite its popularity, its application in
real life scenarios is limited because many methods are not

entirely automated and consume high computational resources

for inferring information. In this work, we contribute two
novel algorithms: (a) one for automatic video sequence seg-
mentation - elsewhere referred to as activity spotting or ac-
tivity detection - and (b) a second one for reducing activ-
ity representation computational cost. Two Bag-of-Words
(BoW) representation schemas were tested for recognition
purposes. A set of experiments was performed, both on
publicly available datasets of activities of daily living (ADL),
but also on our own ADL dataset with both healthy subjects
and people with dementia, in realistic, life-like environments
that are more challenging than those of benchmark datasets.
Our method is shown to provide results better than, or com-
parable with, the SoA, while we also contribute a realistic
ADL dataset to the community.

Categories and Subject Descriptors

1.5.4 PATTERN RECOGNITION]: Applications—Com-
puter vision

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

In recent years, Ambient Assisted Living (AAL) solutions
are being developed to help people with chronic degenerative
conditions continue living independently for as long as they
can. This is achieved in large part by continuous unobtru-
sive monitoring for accurate activity, lifestyle and behavioral
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profiling, which ensures their safety in case of an emergency,
as well as the detection of gradual changes in their condi-
tion. The results of the monitoring and profiling provided
by such systems can then be used as input in appropriate
feedback both for the people being monitored, as well as for
their carers.

Existing assisted living solutions usually employ physio-
logical and environmental sensors that are relatively simple,
like accelerometers and contact sensors. Attention has re-
cently turned to the use of more sophisticated technologies,
based on audiovisual monitoring. In this work we focus on
the use of video for remote monitoring of, for example, peo-
ple with conditions like dementia, living home alone. For
effective video-based monitoring, the recognition of ADLs is
central, and also the focus of this work. Activity recogni-
tion from video for assisted living is based on unobtrusive
ambient sensors, namely static video cameras, which do not
disturb people in their daily life. It is essential to provide
highly accurate recognition results, to build useful activity,
lifestyle and behavioral patterns for each human subject and
help their carer remotely monitor the progress of their con-
dition to help them accordingly.

Activity recognition in computer vision mainly focuses on
extracting information from pre-segmented video sequences,
which makes it inappropriate for dealing with real scenarios,
where videos are not segmented beforehand. In real life sce-
narios scene conditions are challenging and diverse and near
real time results may be required, especially for the detection
of emergencies. In practical situations, activity recognition
needs to be preceded by activity detection, which localizes
an action of potential interest in time in a video.

Early activity recognition analyzed simple, constrained
scenarios [8], [23], while more challenging datasets are now
coming to the attention of the activity recognition commu-
nity, featuring camera motion, greater anthropometric vari-
ance and changes in scene illumination. The current SoA
in activity recognition analyze Hollywood movies [13], [17],
sports videos [20], [21] or activities recorded in unconstrained
conditions, such as YouTube videos [15]. This has led to
the development of more sophisticated algorithms, but at
the cost of a high computational burden, which does not
allow the deployment of these methods in realistic scenar-
ios. Recently, ADL datasets were introduced in the litera-
ture [19], [22], depicting common activities of daily life, per-
formed by several human subjects. Their focus is on real life
scenarios, but they do not address the problem of activity
detection, which requires the automatic detection of activi-
ties in time. Instead, activities are detected manually, and



then classified into one of specific categories under exami-
nation. In this work, we adapt activity recognition to the
realistic data and needs of an assisted living home environ-
ment, where continuous video is available, with no options
for manually segmenting it in time. Motivated by these rea-
sons, we propose robust activity detection algorithm and a
light activity recognition technique for reliable and fast ac-
tivity recognition.

The paper is organized as follows: related work is pre-
sented in Section 2, while Section 3 describes the proposed
activity detection technique. Section 4 describes the activity
representation and recognition algorithms used, while exper-
iments are presented in Section 5 proving the robustness of
our technique in publicly available videos, as well as in our
own dataset. Section 6 completes the work with useful con-
clusions.

2. RELATED WORK

Despite the high popularity that activity recognition has
gained the last years, to the best of our knowledge, only a
few works focus on the activity detection problem for auto-
matic video sequence segmentation [6], [11], [14], as atten-
tion has mostly been placed on accurately classifying video
sequences and not on temporally localizing activities in a
video. It should be emphasized that activity detection is
different from shot detection, as several activities may take
place within a shot, either sequentially or simultaneously.
We contribute a novel activity detection technique to au-
tomatically segment video sequences based on a simple but
robust statistical technique.

Activity recognition, on the other hand, has been thor-
oughly studied during the last decade and usually consists of
two parts, namely activity representation and activity recog-
nition. For activity representation, the literature can be split
into holistic approaches, such as motion history volumes [26],
space-time shapes [8], trajectory descriptors [19], [25], [18]
and temporal templates [2], and local based ones that use
3D local patches such as [13], [25], [24], [10], [27], which are
either based on the extension of local patches to the tempo-
ral space (i.e. SIFT3D, HOG3D, SURF3D in [24], [10], [27])
or on the construction of motion histograms around sampled
interest points (i.e. HOF, MBH in [13], [25]). Interest points
can be sampled either in a sparse manner, as in [27], [12], [7]
or densely [25], the latter providing better recognition rates
than the former.

In this work, we densely sample interest points after ap-
plying a background subtraction technique based on the
higher order statistical analysis of motion in the video se-
quences. In order to represent activities in videos, we use a
local approach, which encodes both appearance and motion
information (HOGHOF descriptor), enriched with holistic
features extracted from raw trajectory cues. This addition
of spatial information in our BoW models is shown to in-
creases recognition rates. Activity recognition based on lo-
cal features usually combines Kmeans clustering with a Chi-
Square kernel, resulting in a BoW representation with hard
binning. Inspired by recent State of the Art (SoA) results
in image classification [9], [5], we suggest instead a soft bin-
ning approach based on Gaussian Mixture Model (GMM)
clustering combined with Fisher vectors.
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Figure 1: Optical flow histograms for static (green)
and moving (blue) pixels. The Gaussian model of
our static data is shown in red.

3. ACTIVITY DETECTION

Activity detection localizes video subsequences in time
that contain potentially interesting information, such as ac-
tivities and events to be recognized. These parts of the video
are subsequently passed to an activity recognition algorithm.
By this technique, un-interesting parts of videos, such as
motionless frames or long video subsequences with the same
activity, are successfully ignored.

For activity detection, we use motion detection combined
with trajectory extraction. We first detect regions of inter-
est (Rol), where motion undergoes changes, and then sam-
ple interest points in them and track them over time until
the motion/activity of interest ends, producing the video
sequence to be processed. Our motion detector relies on
kurtosis-based Activity Areas [3], for which optical flow val-
ues [4] are analyzed statistically and regions that contain
motion throughout successive frames are localized in a real-
time manner. The method of [3] separates moving pixels
from static ones by considering that the inter-illumination
differences of static pixels follow an approximately Gaussian
distribution whose kurtosis is nearly zero. In this work, we
consider that noise-induced estimates of optical flow of static
pixels are approximately Gaussian, as shown in the his-
tograms of aggregated optical flow values in Figure 1, which
is acquired from the analysis of 10 sample videos of URADL
action dataset [19]. Good separation results among the two
classes have also been observed in further action datasets,
such as KIT [22], HOHA [13] and UCF [21]. To further
verify this, we applied the Kolmogorov-Smirnov test [16] on
ten training videos from the URADL action dataset [19],
which is often used to determine if a dataset indeed follows
a Gaussian distribution. The application of this test led us
to conclude that the optical flow of static pixels is adequately
modeled by a Gaussian distribution, unlike that of moving
pixels. Thus, Activity Areas are extracted to separate mov-
ing pixels from static ones by monitoring optical flow values
over successive video frames. The following two hypothe-
ses represent the optical flow estimates u{ (z,y) induced by
noise (Ho) and actual motion u; (x,y) (H1):

Hy u?(m,y):zt(x,y)
Hi : oug(@,y) = w(z,y) + z(z,y) (1)

where u:(z,y) denotes the true optical flow at pixel (z,y) at
time ¢ and z¢(x, y) the additive noise in that location. A fast
and robust way to separate the data following a Gaussian



distribution (Hp) from true optical flow values (Hp) is to
estimate the data kurtosis over time and binarize the result-
ing flow map. A novel technique for accurately estimating
the empirical value of the kurtosis [1] in an unbiased man-
ner approximates the excess Kurtosis by the fourth-order
cumulant estimator:

Gl = e i(wy )
W+2 i(umg) @

where W is the temporal window over which Kurtosis values
are computed, set equal to W = 10. Further experimenta-
tion showed that values in the range W = 10 — 20 lead to
equally accurate Activity Areas (AAs).

The kurtosis values lead to AAs by binarizing the data as
below, suing a threshold acquired empirically from several
videos of the URADL action dataset:

0 if Galz,y] < 2-10e?
AA(x,y):{ 1 ol yl:lse

From these regions, we sample candidate interest points and
track them with a boosted KLT tracker until they become
motionless, after which the video subsequence is considered
to end.

A spatial grid is formed in each video frame’s AAs pro-
ducing a number of blocks where activity detection takes
place. The center pixel (z,y) of each block is considered as
a candidate interest point only when more than 50% of the
block belongs to the moving pixels of the AA. All candidate
interest points are tracked using KLT [28], boosted by a ho-
mography test, which uses a RANSAC estimator to validate
interest point correspondences. Interest points that pass the
test are used to track moving objects and form a trajectory
descriptor, further analyzed in Section 3. When no more
interest points exist in the scene, the video subsequence is
considered to end and activity recognition takes place, so as
to detect the activity taking place in those frames. Figure
2 depicts an example where activity detection localizes the
start and the end frame of an activity subsequence. An in
between frame is also depicted for presentation purposes.

4. ACTIVITY RECOGNITION

Activity recognition algorithms comprise of: (a) activ-
ity representation and (b) activity recognition, which are
highly time consuming, as they need to address difficult
problems, such as camera motion, scale variations, illumi-
nation changes, often present in real, unconstrained envi-
ronments. In the case of monitoring to support independent
living at home, indoors activities are recorded by static cam-
eras, while scene illumination is relatively stable, computa-
tional cost, both for representation and recognition, allowing
a real time scenario to be implemented.

4.1 Activity representation

In order to benefit from the advantages of both local
and global state-of-the-art activity recognition techniques,
we have concluded that a hybrid descriptor can lead to in-
creased recognition rates at a lower computational cost.

Thus, we use a local approach for describing appearance
and motion characteristics of our activity and a holistic one
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Figure 2: Activity detection throughout a video.
Activity Areas are depicted on the left of each frame
while on the right trajectories are depicted. Green
trajectories are active, while red are the terminated
ones.

for global spatial information. Sampled interest points, al-
ready extracted for activity detection, provide us with very
accurate trajectory vectors. Regions around interest points
are described in four spatial scales for scale invariance in our
activity descriptor. We use one of the fastest methodolo-
gies for extracting the activity descriptor, called HOG-HOF
proposed in [13]. HOG histograms sustain appearance in-
formation, while HOF provides motion characteristics. The
spatiotemporal descriptor is formed by concatenating all his-
tograms that belong to the same trajectory. Each descriptor
is subdivided into a (n, = n, = 2,n; = 3) grid of cuboids
and, for each cuboid, coarse histograms are averaged and
normalized to extract rich information in each volume. Raw
trajectory coordinates are added to the vector to include
global spatial information to our descriptor.

Let HOG(Bse,t) and HOF (Bs.,t) be the histograms ex-
tracted inside a trajectory block Bs. = (z,y, wsc, hsc), around
an interest point with coordinates (z,y) and size :

(Wse, hs (ZS—FZ 828—1—1 8)

where ws. and hg. are the width and height respectively.
The index sc denotes the different sizes that the block might
take, depending on the scale size. The resulting spatio-
temporal descriptor around each interest point (x,y) is the
L2 normalized concatenation of the averaged histograms within
each temporal sub-volume that is formed by dividing the ini-
tial descriptor by N/n; :

J-N/nt

Z HOG(Bsc, t)

STgese = et
d {conca Jfl{ Nne

t=(j—1)-(N/nt)+1 2

Yoo

where STyese denotes the final feature vector formed by

j‘%/:"t HOF(B,.,t)
N/nt

t=(G—1)-(/nt)+1



the concatenation, denoted here as concat, of the spatio-
temporal volumes and is used for the representation of each
activity,. HOG(Bsc,t;) and HOF(Bsc,t;) are both repre-
sented below as hist. Each block histogram consists of
ng X ny cells. These cells vote for the construction of the
final block histogram and are computed as seen bellow:

. . wSC
accumulate; ; (hzst(a: +1- e

Ty

histpiock (3507 ti) =

Y+ ’ ’
Ny Nz Ny

Wse Wsc hsc)

2

where (¢,7) = {(1,1)(1,-1)(-1,1)(-=1,-1)} and hist re-
turns the spatial block histogram around each trajectory
interest point. Consequently, histpiock is the accumulation,
here denoted as accumulate, of its 4 cell histograms.

4.2 Activity recognition

For activity recognition we tested and compared two dif-
ferent methods. The first uses K-means and a Chi-Square
Kernel. In this recognition schema, cluster centers are ex-
tracted using K-means and Bag-of-Words follows a hard bin-
ning approach to create histograms of visual-words. Chi-
Square is used for creating a distance kernel among them
and is fed to an SVM classifier to characterize activities in
testing videos. In our experiments, we use K=4000 cluster
centers to partition the feature vector space. To limit com-
plexity, cluster centers are clustered on a randomly selected
subset of 100.000 feature vectors acquired from the training
set. K-means is initialized 10 times in order to provide the
most discriminative cluster centers.

The second technique that was tested is inspired from re-
cent good results in image classification [9], [5]: GMM is used
to define vocabulary cluster centers, while soft-binning is
used to create a Bag-of-words representation for each video.
Fisher vector distances between the activity descriptor and
cluster centers create an analytic description for each video.
In our experiments we tested a much smaller vocabulary
size (K=256) than that used with K-means, which proved
to work more quickly and also result in higher accuracy than
that obtained with larger K-means vocabularies.

5. EXPERIMENTS

Experiments took place on publicly available ADL datasets
to determine the applicability and robustness of our algo-
rithm. Testing our algorithm on such a large number of
videos also gave us the opportunity to detect limitations or
omissions of current ADL datasets: there is insufficient an-
thropometric variance, while environmental conditions are
constrained, making current benchmark data in appropriate
for testing real-life situations. Thus, we recorded ADL data
from the Greek Association of Alzheimer’s Disease and Re-
lated Disorders (GAADRD), both from healthy individuals
and from people with mild dementia to Alzheimer’s (AD)
performing ADLs in a home-like environment.

5.1 URADL dataset

URADL [19] is a well-known dataset for recognizing ADLs
and is used mostly for evaluating purposes. In this dataset,
5 different actors were called to perform 10 different activi-
ties, 3 times in a kitchen environment. A serious disadvan-
tage of this dataset is that it lacks anthropometric variance,

Figure 3: Characteristic video frames for answer
phone, drink water and eat banana activities, taken
from URADL dataset from left to right.

while environmental conditions are quite simple, since the
activities take place in the same location, with the same
illumination, a static camera, no environmental noise and
no occlusions. For evaluating our algorithm, we choose to
use leave-one-subject-out testing. Thus, we initialized the
recognition procedure 5 times, so that we can recognize the
activity of each human subject independently. The names
of the activities of this dataset are encoded in the tables as
AP = Answer Phone, CB = Chop Banana, ES = Eat Snack,
DP = Dial Phone, DW = Drink Water, EB = Eat Banana,
LiP = Look up in Phonebook, PB = Peel Banana, US =
Use Silverware, WoW = Write on Whiteboard. Figure 3,
depicts some characteristic URADL activities grabbed from
some video frame samples.

Table 1: Aggregated results for URADL

HOGHOF| HOGHOF| Vel.Hist | MBH
without | with [19] [25]
RANSAC | RANSAC

Kmeans 87,3% 89,3% 89,3% 89,3%

&

ChiSquare

GMM & || 90,0% 90,6% n/a n/a

Fisher

It is obvious from Table 1, that GMM & Fisher recognition
performs better rather K-means & Chi-Square. This table
also shows that RANSAC helped correct some erroneous
correspondences in the trajectory structure. Our best result,
seen in Table 2, is better than those of both SoA activity
recognition methods [19, 25]. From Table 2, we observe that
our algorithm leads to accurate activity recognition: only
”answer phone” was recognized with low accuracy, as it was
confused with “dialing phone”.

5.2 Dem@Care ADL dataset

Taking into account the pros and cons of current public
ADL datasets, we proceed with the launch of a new set of
recordings, held in GAARD premises in Thessaloniki. Sev-
eral people participated in the experiments, including peo-
ple with dementia, people with mild cognitive impairment
(MCI) and healthy ones. Many people were tested (32 peo-
ple) introducing great anthropometric variations in our ac-
tivity dataset, while the videos contain various activities.
The human subjects were called to perform a set of activi-
ties encoded as follows: CU: clean up table, DB: drink bev-
erage (i.e. water-orange juice), EP: end phone-call, ER: en-
ter room, ES: eat snack, HS: handshake, PS: prepare snack,
RP: read paper on the couch, SB: serve beverage, SP: start
phone-call, TV: talk to visitor. For evaluating our algo-
rithm, we choose to use two different splits of the dataset
shown in Table 3 and Table 4. The first experimental setup



Table 2: Our best recognition result on URADL action dataset, when HOGHOF representation was combined

with GMM & Fisher recognition schema.

AP CB DP DW EB

ES LiP PB US WoW

AP 46,7% 33,3% 20%

CB 93,3%

6,7%

DP 6,7% 93,3%

DW 100%

EB 6,7% 80%

6,7% 6,7%

ES

100%

LiP

100%

PB

6,7% 93,3%

US

100%

WoW

100%

Av.Acc || 90,7%

Figure 4: Characteristic video frames for enter
room, handshake and serve beverage activities,
taken from URADL dataset from left to right.

follows a leave-one-subject-out splitting of the dataset, while
in the second we separate 20 subjects for training and keep
12 subjects for testing. Figure 4, depicts some characteristic
Dem@Care activities grabbed from our videos.

Table 3: 20 train to 12 test video samples recogni-

tion results in Dem@Care ADL dataset.
HOGHOF| HOGHOF| HOGHOF| MBH

without | with co- | [25] [25]
coords ords

Kmeans 80,4% 74,6% 84,2% 77,4%
&

ChiSquare]
GMM & || 79,4% 82,5% 80,9% 77,3%
Fisher

Table 4: Leave-One-Subejct-Out recognition results
in Dem@Care ADL dataset.

HOGHOF| HOGHOF| HOGHOF| MBH
without | with co- | [25] [25]
coords ords

Kmeans 85,9% 83,9% 93,5% 93,7%
&

ChiSquare]
GMM & || 86,2% 91,2% 94,1% 93,4%
Fisher

When using the 20 training - 12 testing video split of the
Dem@Care dataset, seen in Table 3, we surpass the SoA in
most cases. The inclusion of raw trajectory coordinate data
boosts the representation when it is combined with GMM

& Fisher recognition schema and performs far better the K-
means & Chi-square method. In the second experimental
setup, where leave-one-subject-out was followed, our results
were comparable to the SoA, while our recognition rates im-
proved significantly. Finally, Table 5 shows that our method
accurately classifies most activities in the Dem@Care data,
despite the great anthropometrics variance and realistic con-
ditions depicted in these videos. Furthermore, we can ob-
serve from the experiments a peculiar behaviour on the per-
formance of MBH descriptor. Contrary to HOGHOF action
descriptor [25], MBH recognition rates seems to drastically
differentiate among the two experiments. This can be ex-
plained by the fact that MBH are based on the analysis
of actions that occur on the boundary of the human pa-
tient who performs the action. Thus, as the camera distance
from the human patient increase, so does these regions be-
come smaller, producing less discriminative representations
and consequently lower recognition rates. However, as we
can observe from the two experiments, if we increase the
video samples that are used for training purposes, we can
also acquire very accurate recognition rates for MBH, even
comparable to HOGHOF action descriptor.

6. CONCLUSION

In this work, we introduce a comprehensive solution for
activity detection and recognition, where large videos are
initially split into video subsequences containing potentially
interesting activities, which are then processed in for accu-
rate activity recognition. Activity detection is based on the
analysis of motion vectors over time using in a theoretically
sound statistically method, rather than heuristics. Activity
recognition methods based on the SoA in the fields of both
object and activity recognition are then tested on the tem-
porally localized subsequences. Experiments on benchmark
datasets and a new, more challenging and realistic dataset
recorded at the GAARD in Thessaloniki, Greece, show that
our method obtains highly accurate recognition rates, com-
parable to, or surpassing the SoA, making it appropriate for
real life applications.
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Table 5: Our best result in Dem@Care action dataset when using HOGHOF with raw trajectory coordinates
for activity representation and GMM & Fisher recognition schema. Leave-one-subject-out split setup was

followed on this case.

1]

2]

[4]

[7

10

CU DB EP ER ES HS PS RP SB SP TV
CU 83,8% 10,3% 5,9%
DB 0,7% 98,3% 1%
EP 3,1% 89,1% 3,1% 4,7%
ER 100%
ES 10,9% | 2,2% 86,6% 0,3%
HS 93,8% 6,3%
PS 2,9% 8,6% 83,4% 5,1%
RP 3,1% 96,9%
SB 1,5% 11,8% 86,8%
SP 6,1% 6,1% 87,9%
TV 3,2% 96,8%
Av.Acc | 91,2%
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